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ABSTRACT

The problem analysed is that of two-dimensional wave motion in a

heterogeneous, inviscid fluid confined between two rigid horizontal planes and

subject to gravity g. It is assumed that a fluid of constant density p+

lies above a fluid of constant density p_ > p+ > 0 and that the system is

nondiffusive. Progressing solitary waves, viewed in a moving coordinate

system can be described by a pair (k,w) where the constant A - g/c2, c

being the wave speed, and where w(x,n) + n is the height at a horizontal

position x of the streamline which has height n at x = ip. It is shown

that among the nontrivial solutions of a quasilinear elliptic eigenvalue

problem for (,w) is an unbounded connected set in R x (H0 r) C
0 , I).

Various properties of the solution are shown and the behavior of large

amplitude solutions is analysed leading to the alternative that internal bores

must occur or streamlines with vertical tangents must occur.

AMS (MOS) Subject Classifications: 35J60, 76B25, 76C10

Key Words: Internal wave, Solitary wave, Internal bore, Bifurcation

Work Unit Number I (Applied Analysis)
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SIGNIFICANCE AND EXPLANATION

The notion of a solitary wave arose in the last century and provoked some

controversy as to the existence of such a phenomenon. The last few decades
A

have witnessed an upsurgence of scientific work on these waves owing to the

special role they play in the evolution of general disturbances. Solitary

internal waves can be observed in the laboratory as well as in the earth's

oceans and estuaries where density stratification occurs, due to changes in

temperature or salinity.

The problem analysed in this report is that of two-dimensional wave

motion in a heterogeneous, inviscid fluid confined between two rigid

horizontal planes and subject to gravity g. It is assumed that a fluid of

constant density p+ lies above a fluid of constant density p_ > p+ > 0 and

that the system is nondiffusive. Progressing solitary waves, viewed in a

moving coordinate system can be described by a pair (A,w), where the

constant A = g/c2, c being the wave speed, and where w(x,n) + n is the

height at a horizontal position x cf the streamline which has height n

at x = ±. It is shown that among the nontrivial solutions of a quasilinear

-.elliptic eigenvalue problem for (X,w) is an unbounded connected set in

"Rf x H I C0,1). Various properties of the solution are shown and the behavior

of large amplitude solutions is analysed leading to the alternative that

internal bores must occur or streamlines with vertical tangents must occur.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.

,,.'. ,,- " ' " " ,, : t: . - "t*.,+ +. 4 ,+.. - .. .,. . , .,. .',.- . . -, .. . . - . . - - .



A GLOBAL THEORY OF INTERNAL SOLITARY WAVES IN TWO-FLUID SYSTEMS

C. J. Amick and R. Z. L. Turner

1. Introduction

The study of single-created progressing gravity waves was initiated over a century

ago. It began with the observations by Russell [24] of what he termed solitary waves,

which progressed without change of form over a considerable distance on the Glasgow-

Edinburgh Canal. The mathematical analysis of this wave motion on the surface of water,

r. begun in the nineteenth century, h~s undergone a rapid development in the last three

decades, due to the scattering theory for the Korteweg-de Vries equation, which models the

motion of long waves and due to the development of techniques in nonlinear analysis

allowing for the analysis of finite amplitude motions.(cf. [5], [19] and references given

there). 1-The work on surface waves has many parallels in the study of waves in fluids with

variable density. In the case of a heterogeneous fluid with a free upper surface, gravity

* waves still occur, in analogy with surfae" waves in a fluid of constant density,(cf. (23],

[25], (27]). "'What is distinctive about a fluid with density stratification, however, is

the presence of waves which are predominantly due to the stratification and not to the

free surface. These waves, called internal waves, exist in a heterogeneous fluid even

when it is confined between horizontal boundaries, a configuration which precludes gravity

waves in a fluid of constant density.

For surveys of earlier work on permanent waves in stratified fluids and for more

complete references than given here, we refer the reader to the articles by Benjamin (8],

Bona, Bose, and Turner (10], and Turner (26].

Our concern in this paper is with progressing solitary gravity waves in a system

P consisting of two fluids of differing densities confined in a channel of unit depth and

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and the National
%i Science Foundation under Grant Nos. DMS-8203338 and MCS-8200406.
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infinite horizontal extent. The undisturbed state consists of a fluid of constant density

p_ having depth h in contact with the lower, planar boundary and a second fluid of

constant positive density p+ < p_, lying above the first and having depth 1 - h, so as

to fill the channel. The motion studied is assumed to be two-dimensional, inviscid,

incompressible, and nondiffusive. We shall always remove the time variable from

consideration by taking a moving coordinate system in which the flow is steady and

symmetric about the vertical axis.

The problem of finding nontrivial wave motion can be posed in terms of a pair of

harmonic stream functions, * + for the upper fluid and *-, for the lower fluid. At

the interface between the two fluids, a free boundary in this setting, one =ust impose the

continuity of pressure and of normal velocity components. A direct analysis of the

problem in this setting might be attempted along the lines of the work on two fluid jets

by Alt, Caffarelli, and Friedman ([(l, (2)). However, they make essential use of having a

minimizer for an appropriate functional and must do a delicate analysis to show that the

interface separating the two fluids is of class C - In the present context the analogous

minima would correspond to trivial parallel flows (cf. [101, (261) and the nontrivial

flows, to what are undoubtedly saddle points. By taking a different approach we obtain a

global picture of the solitary wave solutions and show that for each wave the interface

between the two fluids is analytic.

The approach taken in this paper is to approximate the discontinuous density function

by a sequence of smooth density profiles and to obtain sufficiently good estimates in the

smooth case to allow appropriate limits to be taken. In this way we also show that

discontinuous densities and smooth, rapidly varying densities give rise to motions which

are close to each other. Using methods of global bifurcation, the first author in (4]

gave a global theory for solitary waves in the case of an arbitrary smooth density. The

solutions are given by stream functions which are smooth everywhere in the channel. This

approach is not limited by the particular shape of the density profile, as was the
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variational approach used in [10]. However, a limiting process to obtain solutions for

the density having a jump, froam 0 to p would still entail a confrontation with an

unknown free boundary.

An alternative is to use semi-Lagrangian coordinates. To describe these coordinates

we first note that the stream function referred to in the last paragraph differs from the

usual one in having an intervening density factor (see formula 2.14). Using accepted

terminology we call it a pseudo-stream-function and denote it by # = *(x,y), where x

is a horizontal coordinate and y is a vertical coordinate chosen so that gravity acts in

the negative y direction. In the semi-Lagrangian formulation one uses x and * as

independent variables and y as a dependent variable. In this formulation the equation

to be considered is highly singular. However, what would be free boundaries in the

spatial domain correspond to coordinate lines, # - constant, in the new variables. This

formulation was used by Ter-krikorov [25] in combination with fixed point methods to show

the existence of small amplitude periodic and solitary waves in the case of a fixed or

free boundary at the upper surface of a fluid with smoothly varying density. Using this

formulation, but applying a variational method, the second author in [26] and [27] studied

the two fluid system under consideration here as well as a multiple fluid system with a

free upper surface. The existence of periodic and solitary waves was shown, the latter

waves being obtained as the limit of periodic ones with ever increasing periods. In the

present paper, to obtain large aplitude waves in the case of a discontinuous density we

work principally with the semi-Lagrangian formulation, but as a starting point use the

solutions provided by [4]. It will be shown that there is a global theory for a

discontinuous density analogous to that derived in [4] for a smooth density.

In Section 2. 1 the passage from the postulated physical model to the relevant

equations is made. The equations are of two types. The first is a semi-linear elliptic

equation for a pseudo-stream-function *(x,y). The second is a singular, quasi-linear

elliptic equation which governs the deviation of streamlines from parallel flow when semi-

Lagrangian coordinates are used. In both equations there enters an unknown parameter

5 -3-
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which describes the speed c of a progressive wave as seen in "laboratory" coordinates.

In the second formulation it appears explicitly as an eigenvalue parameter X - g/c2

where g is the gravity constant. C

In Section 2.2 the main results of the paper are stated in Theorem 2.1. It describes

a branch S of solution pairs (A,w) where w - w(xllx 2 ) is the deviation at the

horizontal position x 1 of the streamline which has height x 2 at x, -. 1. If T

denotes the domain of the pairs (x11 x2 ), the branch is unbounded and connected in

R x (HI(T) 0 C 0"(T)). It emanates from a pair (Ad,0) where A. is a particular0 do d

function of p , p_, and h. The speed Cd = (g/Ad)1/2 is a critical speed for the

stratified configuration, the analogue of the speed Vgh for long waves on the surface of

water of depth h. For all nontrivial solutions in S, 0 < X < Ad  and thus the

associated speeds are supercritical, a result consistent with all analyses of solitary

wave phenomena.

The sign of another parameter e, a function of p+, p_, and h, predicts the sign

of streamline displacements. If e > 0, the undisturbed state will allow waves of

elevation, while for e < 0 it allows waves of depression. The phenomenon described

here, as distinct from that associated with simple eigenvalue bifurcation, is one-sided.

If e > 0 there are elevation waves but no depression waves near the bifurcation point

(Ad,0). Finally, all waves are symmetric about their crests and decay monotonically and

exponentially to zero as x + 1- .

The core of the proof of Theorem 2.1 is carried out in the course of Sections 3

through 6. We begin with a sequence pn n - 1,2,3,.. , of smooth density profiles in

the undisturbed channel configuration which, as n + -, converge to the given

discontinuous density function. It is shown in Section 3 that for each n a subset of

the pseudo-stream-functions from 141 provide an unbounded, closed connected set of

s(A,w) in R x H1.olutons(T) with which to work in the new coordinates. In Section 4

a general scheme for the limiting process is given. Then, after imposing restrictions on

the gradient of w, regularity estimates for solutions are derived, the estimates being

-4- I.
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independent of n. These estimates are used in Section 5 to obtain connected sets of

solutions in x (T) for the case of a discontinuous density. In Section 6 the

solution sets are examined in the stronger topology of R x (H0(T) () C
0'I(T)). Here it is

shown that connectedness is preserved. The next step concerns the restrictions imposed on

the gradient of w in Section 4. It must be shown that for any solution (A,w) under

consideration, the gradient of v does not take values in a range that would make the

underlying elliptic equation singular. This is accomplished by returning to twa original

formulation involving the pseudo-stream-functions 4' and obtaining bounds on their

gradients; that is, bounds for the velocities in the flow domain. These bounds translate

into the desired estimates for the gradient of w.

In Section 7 results constituting the proof of Theorem 2.1 are collected. Many

properties of solutions are obtained in the course of proving the existence of the set S.

To these are added the proofs that the interface is analytic and that depression

(elevation) waves are absent near the bifurcation point (Xd, 0) if e > 0 (e < 0).

Numerical studies have been made of periodic, interfacial, gravity waves for two

unbounded fluids of differing densities (cf. (17], (28]). It is found that along a branch

of waves of fixed wavelength, the separating streamline steepens, eventually manifesting a

vertical tangent and, past that, an overhanging region in which heavier fluid lies above

the lighter one. From these studies one might conjecture that, along the branch of

solutions S found in this paper, w becomes large in C0, I. In fact, the introduction

of the C0'I topology apart from having a crucial role in the estimates of Section 4, was

suggested by the numerical work. Section 7 concerns the behavior of large amplitude

solutions on the branch S. The fact of having a channel of finite depth and solitary

rather than periodic waves may change the character of large amplitude waves. We pursue

the implications of assuming that wave profiles do not steepen to the point of having

vertical profiles. A first consequence is that there must exist a solution (T,Z) of the

flow equations for which w is not in L2(T). Rather, at x - I- it asymptotically

approaches a nontrivial parallel flow, a "conjugate" flow in the terminology of Benjamin

-5-



[91. A further consequence is the existence of an "internal bore" of predictable size arnd

speed. As yet, no contradiction has arisen from this train of arguments and so the large

amplitude behavior remains an open question. in a project in progress the second author

and J. -H. Vanden-Broeck are carrying out a numerical study of the solitary wave patterns

shown to exist here and hope to shed light on their behavior.
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2. Formulation of the Flow Problem and Results

2. 1. The Flow Equations

Here we describe the physical model under consideration and the passage to a boundary

value problem for a partial differential equation. The boundary-value problem, in turn,

is formulated in essentially two ways and the interplay between these is used in our

analysis. Consider an incompressible, inviscid fluid acted on by gravity and restrict

attention to a two-dimensional flow confined to and filling a region

S - ((x,y) I - < x < , -h < y I - h}. The acceleration of gravity has magnitude g in

the negative y direction. Further assumed characteristics of the fluid which make

propagation of permanent waves possible and their study tractable are that it is

heterogeneous and non-diffusive. To explain the last term it is worthwhile ti first

describe a diffusive system. Consider a mixture of two componenrs, say water and a

dissolved salt. In a mixture the molecules can trade places without having any net mes-

molar velocity. However, if the molecules have different masses, there can be a net

movement of mass. Let q denote the mean-molar velocity and Q, the mean-mass velocity

a (cf. Eli], Chapter 1). Let p denote the density of the fluid and suppose, to begin

with, that p is a smooth function of apace and time. Subsequently we shall formulate

the problem for a discontinuous density. If v denotes the diffusion coefficient

(assumed the same for the two types of molecules) then the Fick diffusion law (cf. (7]

[11]; p. 23; [14]) gives

Q - q - (2.1)
P

The Euler momentum equation is

P(Pt + (Q - V)Q) - -Vp - pgk (2.2)

where p is the pressure and k is a unit vector in the y direction. Conservation of

mass takes the form

We wish to thank the authors for a discussion of the diffusive model.
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+ div(pQ) = 0 (2.3)

at

and the volume incompressibility, the form

div q = 0 . (2.4)

A set of equations for p and q is obtained by using (2.1) in (2.2) and (2.3). We will

seek a wave motion which has a permanent form when viewed in a coordinate system moving in

the x direction with constant speed and in such a coordinate system the equations will

have no explicit time dependence. To avoid introducing new notation let us assume for the

remainder of the paper that all quantities are referred to the moving system, but retain

the notation already introduced. With no time derivatives present, the equations for p

and ' reduce to

-L -% _

P(q V)q + 0(v) = -Vp - pgk , (2.5)
-S%

q * Vp - vAp = 0 , (2.6)

div q= 0 (2.7)
I.,

where O(v) refers to terms of order v for v small. Time scales for diffusion (e.g.

in stratified salt solutions) are on the order of hours while a wave of the type sought

here will pass in a matter of seconds. Thus, diffusion plays an insignificant role in the

wave propagation phenomenon. By a nondiffusive fluid we merely mean a fluid governed by

(2.5)-(2.7) with v - 0. The resulting equations are the standard ones used for

nondiffusive stratified fluids, but the condition q Vp = 0, attributed to

nondiffusivity, is hereby rationalized. Otherwise, it would seem to arise from using a

single solenoidal field q~ together with mass conservation and not have any clear

connection with diffusion (or lack of it).

The equations which result from setting v = 0 in (2.5)-(2.7) and which are the

basis for our analysis are:

P(q . V)q = -Vp - Pgk , (2.8)

q • Vp = 0 , (2.9)

div q= 0 • (2.10)

For use in the sequel we let q - (U,V) where U and V denote the horizontal and

--
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vertical components of velocity, respectively. It will be assumed that in the original

- "laboratory" coordinates the fluid is at rest at x = - and there has a positive density

.', p.(y) which is nonincreasing in y and satisfies p.(-h) > p.(l - h). Thus if a wave

under consideration is moving from right to left in the "laboratory" with speed c > 0, a

corresponding boundary-value problem in the new coordinates is to find q(x,y),

* p(x,y), p(x,y), and c satisfying (2.8)-(2.10) and

lim P(x,y) = P.(y) , (2.11)

lim (U,V) = (c,0) , (2.12)

V - 0 on aS (2.13)y

where 8S denotes the boundary of S. Note that q(x,y) - (c,0), p(x,y) = - f p.(s)gds,
0

and P(x,y) - Po(y) is a solution of (2.8)-(2.13) for any real c and will be referred

to as a trivial solution. We shall find nontrivial solutions of the boundary value

problem (2.8)-(2.13), properly interpreted, for a piecewise constant density Pd(y)'

given as p.(y) and shall do this by way of smooth approximating densities. In the

treatment of smooth or discontinuous densities it will always be assumed that each

streamline (i.e., integral curve for q is a simple Jordan arc connecting x - - to

x = +-. In particular, there are to be no "internal eddies", that is, no relatively

compact regions in S bounded by parts of streamlines.

From (2.9) and (2.10) it follows that q admits a stream function, as does q

4**_L
multiplied by any function of p, since p is locally constant on streamlines for q.

.,.>
In particular, there is a "pseudo-stream-function" *(x,y) for which

1/2 A
P q " ( y,- x) , (2.14)

the subscripts denoting partial derivatives. The total head pressure H is defined by

1 A- '2
H(x,y) - p(x,y) + i P(x,y)tq(x,y)l + p(x,y)gy (2.15)

and from (2.8) it follows that

T-PV(Vx - U y) + P x2 (2.16)

and

K"->

IL°



T. 31 U(Uy - v x ) + P4 i +y) . (2.17)

Since q * Vp = 0 the Bernoulli condition

q * VH - 0 (2.18)

follows. Thus, H and p may be considered as functions of the single variable * and

we shall write H(x,y) or H(*) and p(x,y) or p(t) when no confusion is possible.

Since all streamlines go to infinity where p and q are known and where p can be

assumed hydrostatic:

y
p(y) =- f p.(s)gds , (2.19)

0

the functions H(4) and p(*), can be computed explicitly when p. and c are given

(cf. (2.21), (2.22)). The explicit examples in [10], section 6, illustrate the

computation.

Define

y
(y) = c f V/.(s) ds, (2.20)

0

the pseudo-stream-function "at infinity". Let Y(4) denote the function inverse to T

so that Y(Y(y)) = y for -h < y < 1 - h. Then all along the streamline with value 4,

the density has the value

P(M} = p(Y( )) (2.21)

and for a flow with a pseudo-stream-function 4(x,y) the density at (x,y) is

p(x,y)) = p.(Y((x,y))). That is, the streamline through (x,y) must be followed to

to ascertain its associated density. Similarly, from the data at infinity we have

2

"1(*) - p(Y(*)) + P(*)I- + gy(*)} (2.22)

and each of (2.21) and (2.22) is defined for Y(-h) ( 4, C 1(1 - h).

-10-
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To obtain a partial differential equation for #, suppose U # 0 (as we shall).

Using the chain rule to express the derivatives of H and p in (2.17) one obtains"' ' i r" (uy - V) +* Iq2
d* y x (dg)

after cancelling a factor /P U I ,f UY - Vx is evaluated using (2. 14), the last
ay

equation becomes the semilinear elliptic equation

A* + gyd (2.23)
d# d#

which is Yih's version of Long's equation (cf. [10] for references). The associated

boundary conditions are

.(x,-h) -!(-h), *(x,1 - h) - Y(1 - h)s x C R (2.24)

and

lim *(x,y) T Y(y) • (2.25)

The formulation at this stage, given p.(y), is to find c and a function *(x,y)

satisfying (2.23)-(2.25). If p. is smooth, one seeks a smooth ,. If p. is the

* piecewise constant function

.0- D _ -h < y( 0
"- ' 0<<- (2.26)] + 0 < y <1- h ,

then the meaning of (2.23) must be clarified. The dividing streamline between the

portions of fluid with different densities is that on which # - 0. Suppose it is the

graph of a function r - ((x,fy(x))j-m* < X < W}. In each of the regions

S- - {(x.y)l-h < y < y(x)} and S+  {(x,y)ly(x) < y < 1 - hi, p is constant, taking the

values P and o + respectively. From (2.19) and (2.22) H is constant in each region

* and by calculating its values at x - - and y - 0, on either side of r, one sees the

values to be H- p_c2/2 and H+ - p+c2/2, respectively. Equation (2.23) requires @

to be harmonic in S +, as expected. As is a measure of flux we require it to be

continuous. Thus

0 on r (2.27)

k..
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and since it should also satisfy (2.24), by the maximum principle it will be positive in

S+  and negative in S-. Let * denote the restrictions to S , respectively. An

additional requirement on, the free boundary r is that the pressure

p H - 1  V1_ g
2

be continuous. Thus

I -22 2

S{IV* I2 - IV*I} = (P+ - P ){-- gy) on r (2.28)

using the values 0 from above. To summarize, the boundary value problem for the given

discontinuous density (2.26) is to find r. c, and *(x,y) such that * is harmonic in

S and satisfies ,2.24), (2.25), (2.27), and (2.28). There will be no problem

interpreting the conditis as it will be seen that r is smooth as are the extensions of

4' to the closures St .

Next we give alternate formulatiot.s of the boundary-value problems corresponding to

the smooth and discontinuous densities, respectively. We shall work only with flows in

which no reversal occursi that is, for which U(x,y) > 0 in B. From (2.14) this

corresponds to #y > 0 and for such functions one can solve for y as a function of the

spatial coordinate x and the "material coordinate" *. The utility of this semi-

Lagrangian description is that for the density (2.26) the unknown int-rface function y

is merely the unknown function y(x,*) evaluated on * = 0; i.e.

y(X,O) • (2.29)

A disadvantage of using y as a dependent variable is that the semi-linear equation

(2.23) is replaced by a singular quasi-linear equation for y(x,#). Since

y(x,*(x,y)) - y one has the relations

x + Y O x (2.30)

y y *.y 0

from which one derives the equation

! + 1 + y2 ) + g dp dH (2.31)
" (x * 2 23# y " d

-12-
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in RN xY(-h),Y(I -h)) from (2.23). Ih associated auxiliary conditions are

y(x#Y(-h)) -- h, y(2c,Y(i h)) - I - h, x e R (2.32)

and

liz m , Y(X*) . (2.33)

Cne final change of variables will bring the equation to the form used by the second

author in [26]. 'At x, - XI X - TC$) and

w(xl1z2 ) - Y(x11y(x2)) - x2 (2.34)

so that w represents the deviation at a horizontal position x, of the streamline which

has height x2 at -. it should be emphasized that x2 is a rescaled streamt

coordinate. *in describing an equation for w we set

2, 2

f(Pl1p2) 2(1 + P2) (.5

f-MO i - 1,2s A - g/o * T - a x (-hil - h)i and use the summation convention. A

calculation produces an eigenvalue problem for the pair ()A.w)3

- , ,(x2 )fi('Vw) -- Xp'(x2)win T,(.6

w(x11-h) - w(xl,1 h) - 0, X, e R (2.37)

lim w(x11 x2) - 0 *(2.38)

is4. The case for the discontinuous density (2.26) requires a separate formulation. While T

4, and S coincide, the domain T*- ((xl1x2) e T~x2 > 0) is what corresponds to S. OnCke

defines VT similarly. By a solution of (2.36)-(2.38) for the density (2.26) wr

understand a function w e CO'1(R) nl C (T±) satisfying (2.37), (2.38), and the weak

equation

I pdf C(w) a- -X f Pwg -)(P - P+f w(x110)V(x *0)dx, (2.39)

-13-
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for all 9 e C;(T). To keep both (2.36) and (2.39) in mind we shall simply refer to a

solution of (2.36)-(2.39). Throughout the paper standard notation for function spaces

will be used (cf. [13]). We shall write C for a space CO of continuous functions.

2.2. Results

Theorem 2.1. Lt pd  be the discontinuous density given in (2.26), let

d (p

and let
i0- 

P_ +

h2 2 (2.41),.,h (1 -h)2

Then if e > 0,

(a) There exists an unbounded, closed, connected set SC R X (HI(T) A C0 ' 1 (T)) of

solutions (A,w) of (2.36)-(2.39) with (Ad,) S.

(b) There is a positive constant X = X(P ,P) such that if (X,w) e S\{(\d,0)),

then X 4 X < A w > 0 on T, w(-x =x2 ) w(xl1 x2 ) on T, and !w < 0 on

(0,-) x (-h,1 - h).

(c) The function w has real analytic extensions to T-F and 7, 1w CaT), and

Pd(x2 ){f2CVw) - Aw) C o(T) 1 2.42)

for some H81der exponent a ; a 0 > 0, uniformly for w in bounded sets of

jd) There exists a constant K -K(p_,p+,h) such that for all (Aw) c S,

0 < K in T
1 2w

4 and

- x 2

T i , + x2 K in T .
x21

-14-
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1'

CW) For each (w,v) e S\( dO)}

lw(x,x 2)t + Vw(xxIC2)t ' C21xl I

where C 1 and C2  are positive constants depending on (.wv).

f+y lvi is sufficiently small, the only solution(f) if 11 - ",1 + I"IH(T) C0*1(T)

of (2.36)-(2.39) for which w is even in x, and for which both v and

-3w/3x have signs opposite to that of a for x, > 0 is the trivial

solution.

If a < 0, the results (a)-(f) hold with the change v < 0 in T and )1 0

for x, > 0 in part b).

We shall restrict attention to proving parts (a)-(f) for e > 0 since the case

e < 0 is analogous.

The implications of the assertions in the theorem for the fluid flow are not all

transparent and some discussion is in order. The value Id at which bifurcation takes

place and the sign of e as an indicator of the direction of streamline displacements

both arise in the small amplitude calculations of long (16] and Benjamin [81 as well as in

the variational approach of the second author in [26]. In the passage from the physical

flow model to the problem (2.36)-(2.39) we did not address the question of which solutions

(Cw) give rise to physically reasonable flows. In the approaches using the equation

(1.23) for *(xy) further restrictions intervene (cf. (4], (101). Here, however, each

pair (CAw) e S corresponds to a physical flow. The main point is to verify that all

streamlines connect x - - to x - 4 or, equivalently, that -h < x2 + v(xl,x 2 ) < 1 - h

for -h < x2 < 1 - h. Since v - 0 for x2 - -h and x2  1-h and since 1 + wx > 0

by part d), it follows that x2 + w lies in the desired range. The bounds in part d)

are, in reality, bounds on velocities, for the use of the relations (2.30) together with

(2.14) and (2.34) yield

V%

-15-
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4

U - .
V Y + VX

x2  (2.43)

V- ax 1 + Wv
X2

The velocity c satasfies

QV/ d)1/2 < c ( g/A))1/2  (2.44)

using part b) and thus U and V have bounds depending only on p_, p and h. The

velocity (g/Ad) 1/ 2  is the so-called "critical velocity" associated with the fluid system

and (2.44) shows that all solitary waves found here have supercritical velocities. The

remaining parts of b) describing the shape of v are self-explanatory and are in accord

with observed phenomena (cf. (301). The smoothness of w is more than sufficient to give

a sense to (2.36)-(2.39). The condition (2.42) corresponds to the pressure condition

(2.28). To see this one uses (2.43) to obtain

1 2 1 2

p-(f2 (Vw) - Aw) . 2 2 2 - g W}01+ W 2 c2

2 x2

1-2 {p1(- - gw) - . (2.45)
c

On the dividing streamline w(xl,0) - y(xl,0) and the continuity of the expression in

(2.45) yields the continuity of pressure expressed by (2.28). Having w with the

regularity stated in part c) it is a simple matter to verify that (2.36) holds in T+ U T-

44 and that the weak equation (2.39) holds. The exponential decay described in part e) shows

that the wave is of essentially finite extent. Of course, the proof makes it evident that

the constant C2 approaches 0 as A approaches Ad and this is to be expected in

solitary wave phenomena (cf. (61, [8], 12], [251). The nonexistence result in f) CI

exhibits the delicate nature of the bifurcation at (d,o0), a behavior quite different

from that at a simple eigenvalue wherein the bifurcating branch crosses the line of

trivial solutions.

-16- -

;.;:..V- - -. j*~



-IN

3. Solutions for Sooth DensitiesI

Let P , n - 1,2, ... be a sequence of nonincreasing functions in Ct-h,1 hi

which converge as n *-to the discontinuous density ~dgiven in (2.26). For

definiteness suppose that p~ -p_ for -h 4y 4 and that p - p~ for

1/n C y 4 1 - h. Let p nplay the role of the smooth density p. in (2.20) and consider

solutions C1,#), A - g/c2  of the corresponding problem (2-23)-(2.2S). Eat u - u(x,y)

be defined by the relation

clpn-y u(xy) - TYy) - *(x,y) .(3.1)

To avoid introducing more notation we will refer to the pairs (A,u) as solutions of

(2.23)-(2.25). In an earlier paper (4] the first author obtained global solution branches

for the flow problem with a smooth density and those results will be used here. Thie

description involves a parameter V n defined as follows.* Hereafter let I denote the

interval (-hi - h) and define

-f' 2

I 1 n (3.2)
2*vH0 (Z I Wn)'

For the imooth density p n the quantity 11 n plays the same role that I in (2.1) plays

for the discontinuous density. That is# (Ui 0) is the bifurcation point of a branch ofn

solutions. It will be shown in Zinma 5.5 (c) that

ham 11n . ~d(3)

corresponding to e defined in (2.2) is a parameter An (cf. (4], formula (7.25)) which

satisfies

"a An e

*For >n 0 one obtains waves of elevation for the smooth density On and that is the

case discussed here. in Section 7.2 of (4) it is shown that there is a maximal, connected

set ~n C 3RX (H I (a) r) C0 ( of solutions (k,u) containing WI n0). Furthermore, for

0 n

-17-
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(Au) c tn\{(UnO)) the parameter A satisfies 0 < yn( < U n", where Yn isa

constant, and the function u satisfies u > 0 in S, u(-x,y) - u(x,y) in S, and

au/ax < 0 for x > 0.

For our purposes the nonlinearity in the basic equation (1.1) of (4] can be assumed

smooth and bounded for a fixed smooth density on (cf. the discussion following 7.14 in

(4]). Standard elliptic theory applied to such an equation gives local H2 bounds from

local H1 (or L2 ) bounds and by embedding theorems, local B5lder estimates (cf.

[221). Hence, if a sequence of solutions converges in H01(S), it will converge uniformly

on bounded subsets of S, according to the Arzela-Ascoli theorem. Since u varies

monotonically for x > 0 the argument given in Lema 4.6 of this paper shows that u

converges to zero as x + +-, uniformly on bounded subsets of HIO(S). As a consequence

the topology of R x H0 (iS) is stronger than, and hence equal to, that of

R x (H0 (iS) r) C (g)) when restricted to the set of solutions Dn . We conclude that we may

replace HI(S) ) C CS) by H0 (S) in the preceding paragraph.

A solution (X,#) of (2.23) gives rise to a solution (Xw) of (2.36) provided the

strict inequality *y > 0 holds in S. If u - 0, then #(x,y) T(y), whence

- 'iy) > 0 in S. Letay

Cn - {maximal connected subset of Dn' A± > 0 in S} (3.5)

and

En - {(A,w)I(X,u) C Cn} (3.6)

This defines a one to one correspondence between Cn and Ent a set of solutions of

(2.36)-(2.39). or nontrivial solutions (A,u) we have 3u/3x < 0 for x > 0 whence

3w/3x1 < 0 for x, > 0 by (2.30), (2.34), and (3.1). Since w is even in x, and

vanishes at infinity, it follows that w > 0 in T if (X.,w) c En\{(unl0)}*

Lemma 3.1. The map from Cn to En taking (X,u) to (A,w) is one to one and

continuous from Rt x H0 (S to t x H0 (T). For any rectangle B - J x I, J open (and

possibly unbounded) in R

% ' le 7 . . : *~ \ % ,
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8(B) H C 8I I(B)(37

and

lul B K2 1WIHI(3 (3.8)

where K, and X2 depend on n and X, also depends on a lower bound for *N # being

associated with ua. The constants X, and K2 are independent of the horizontal

interval J.

Proof. The assertions of the lemma are valid for any smooth density and in the proof

we write p for p n# supposing we have fixed ni. For any pair ()X~u) eCn the

corresponding ty > 0 and hence the correspondence between u and w, via y(x,#) is

well defined and one-to-one.* A further consequence of # > 0 is the bound

Y(-h) 4 * 4 ?01 - h) in view of the boundary conditions (2.24). This bound, together

with standard elliptic estimates applied to the semi-linear equation (2.23) yield L

estimates for derivatives of # of all orders, depending only on p (that is, on n).

In particular 4, y K, where X depends on n.

In cosparing the HInorm of 'a and w we first note that since p is smooth and

positive and the speed c - (9/X) /2is bounded above and below on Cnu it suffices to

prove inequalities (3.7) and (3.8) with ua replaced by

V(x,y) - cvp(y) u(x,y) - TYy) - *(X,y) *(3.9)

From (2.20) and the coordinate relation (2.34) one obtainsA

aw - !X (x,Y(x 3YC 2 -1

D - 34 / x2

(x(x2))

CVP((O(XX)I)(3. 10)

andI
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(' x,y)aw a x a x( . 1Y " W• (3.11)

It follows that for each fixed x -x ,

I Iv,12 2 - f 1 (02 + (c/'P(Y()) - 4y )2 )dy . (3.12)
z 1*ycpTy3 *

For a wave of elevation w > 0 and *(x,y) < T(y), and so

P(Y(O(x,y)) ) p(Y(Y(y))) - p(Y). Th'us

c f i'p(Y(#(x,s)))ds + Y(-h) - *(x,y)
-h

y -h

c f /p(a) d + f clp(s)ds - #(xy)
-h 0

c f Ifp(s)d - #Cx,y)
0

" Y(y) - (x,y) (3.13)

y
in view of the definition (2.20). Since c f /o(Y(#)) + Y(-h) - #(xy) vanishes at

-h
y - -h, (3.13) can be ccbined with the Poincarg inequality to yield

f2(x,y)dy - f (V(y) - *(x,y))2

I I

4 f (fY cip(Y(*(x,s)))ds + ?(-h) - 41)
I -h

a y #)
4 K f (ry (f c pI(Y*)) + Y(-h) -

I -h

. K f (cpY(o)) - *y)2  (3.14)
I

Since 4 K it follows from (3.12) and (3.14) that for any rectangle B -[,]x I

-20-
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f 9 2 < K' f IWI1 2  K' lw1 2
1  (3.15)

B B H(l)

where one uses the bounds on #y and c in the denominator in (3.12). Since *x 4-,,

(3.12) also yields

' f Iv,, 2 ) f ., + (c/py() - CipYY" + c pY( ) - 2
2-. B B

31 2

' ( 2 + 12 _ - 2 (3.16)
a' %

where the mean value theorem, is used to obtain

rp-y(-- _ 1py()12 ( - I2

From (3.15) and (3.16) it is clear that

l(a) - KJwI (B) (3.17)

and hence (3.8) holds.

For a fixed (A,*) e Cn , there holds y > K> 0 and one readily derives

' i1'1B 1((.),IWI HIMs 4 - ;lI())(-8

from (3.12) using a mean value estimate as in (3.16). Hence (3.7) holds.

To see continuity of the map from Cn to En consider a sequence of solutions

( umU), a - 1,2,... converging in R x HI(5) to (L,u) £ Cn" et and w be the

respective counterparts of u. and u. If A - U n then u - 0 according to the

description of Vn• Then since um  converges to zero in H0 (S), elliptic estimates show

Vu to be small uniformly on S for all large m. The y derivatives of the

corresponding *m are bounded below by a positive constant, uniformly for i large and

hence (3.7) implies the convergence of wm to zero in H (S).

If A < n' then A < I (A + < P for all largo m and the function *
nr a 2 n n

corresponding to u satisfies i > 0 in S. In fact, there is a constant K > 0 so

that ) K on S and 'm , K on S for all sufficient large m. To see this,
Oy

-21-
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consider first the behavior for large x. The method of proof of Theorem 2.3(b) of [41 is .1
easily used to show that eu01 1 K'eBIXI and lul 4 K'e- Blx l where B K"(P -).

, Elliptic estimates show that Vum and Vu have the same type of decay for large x.

Let BN denote the subset of S (or T) where Ixi 4 N. It follows from (3.1) and the

exponential decay that for some N > 0 and all m sufficiently large the y derivatives

of 0 and *m are bounded below by a constant K''' > 0. As noted at the outset of the

proof, the second derivatives of the function *m have a bound on S, independent of

m. By the Arzela-Ascoli theorem it can be assumed that the functions - converge

uniformly to on BN . Since R > 0 on BN1 it is clear that for all sufficientlyay ay

large m there is a positive K which serves on B and on its compliment as a lower
N

bound for the y derivatives of * and *m"

To see that wm converges to w first note that, according to the lower bound just

established, (3.7) holds for the pair (u,w) and for the pairs (Um,wm) with K,

independent of m, provided m is sufficiently large. For any given e > 0 the norm

of u in HI(S - BN) will be less than e for N sufficiently large and the norm of

un HI(S - BN) will be less than 2c for m sufficiently large. Then the norm of

wm  in HI (T - BN ) will be at most 2KIe and so it suffices to show that wm  converges

to w in HI (BN) for each N. Since the y derivatives of the *m have a positive

lower bound K for all large m, one readily sees that the inverse functions ym(x,*)

converge uniformly to y(x,*) on BN as do the functions wm to w on BN.

Derivatives of the formulas (3.10) and (3.11) provide C2 bounds for the functions w.,

uniformly in m for all sufficiently large m and hence another use of the Arzela-Ascoli

theorem gives convergence of wm to w in C'(BN) and hence in HI(BN). q.e.d.

Theorem 3.2. For each n, En is an unbounded, closed, connected subset of R x H (T)

containing (n ,O).

Proof. The continuity of the map from Cn to En implies that En is connected.

.1 To see that En is closed let (Amewm) c Ent m = 1,2,..., converge to (X,w) in

-22-
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O x HI(T). The inequality (3.8) shows that the corresponding functions u. are uniformly

bounded in H I(S). From section 5 of [4] it follows that the sequence (Amu ) converges

Sin K x H(S) to a solution (X,u). The function u will be smooth as will the

corresponding *, again from elliptic estimates. In order to show that En is closed it

suffices to show that a*/ay > 0 in S

If u S0, then *I - Y and its y derivative is positive in L~ If u 1 0 then

X < 1 and Vu decays exponentially to zero as lxi + - as was indicated in the

previous proof. This decay means that R is positive for (x,y), !\B, for some N.

Since p is constant near y = -h and near y - 1 - h, * is harmonic near those

lines. Moreover, * is nonconstant near those lines for otherwise it could not approach

- as jxj + -. From the maximum principle it follows that is positive on theay
boundary aS and so if it vanishes, it must occur at a point (;,j) e S. Suppose this

occurs. Then since ? 0 in S, the gradient of -1 must vanish at (xy) with the

result that

ao < KlC(x _ +12 (y _ Y) (3.19)

3yyin a neighborhood of (;,g). But then (*y)- has a nonintegrable singularity at

(,y) N Now apply (3.12) to wm and *, and integrate the result over an x interval

containing x. Since wm is bounded in H uniformly in m, one can conclude that the

- -1
integral of (34' /3y) over a neighborhood of (x,y) is bounded, uniformly in m.

Patou's lemma would then show (3/ay)-I to be integrable near ( ,i), a contradiction.

The contradiction just reached also arises if one assumes En bounded. For then
.

(3.8) shows that Cn is bounded and hence there is a sequence (Xmfu ) converging to

(X,u) c Vn\Cn for which the corresponding *y must vanish somewhere. q.e.d.

For later use we include the following result.

Lemma 3.3. For each n, the identity map on En is continuous from R x H((T) to

R x (HO(T) r) CI(T)).

-23-
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V. Proof. The proof is similar to the proof of continuity in lema 3.1 and we use

notation from that proof. In fact the continuity on bounded subsets of T follows from

the arguments in the last paragraph of that proof and so only the "tail" behavior need be

examined. suppose (lm,wm) converges to (X,w) in R x HI(T). Then from (3.8) the

corresponding Iuml HI(S-Btlt can be made arbitrarily small for large N, uniformly in

m. Elliptic estimates then show IU. l_) to be small, uniformly in m. Since the
C(S-BW) 

3
function # corresponding to w satisfies lk > K > 0 in S, one has T- K/2 in

S for the corresponding *m when m is sufficiently large. Then the formulas (3.9)-

(3.11) show !Wm.c1(sBW) to be small uniformly in m, so the identity map is

continuous. q.e.d.

m
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4. Sets of Solutions with lostricted Gradients

In Section 3 it was shown that for each n the problem

S-~ (Pn(x 2 )f (Vw)) - -AP'(x 2 )w in T , (4.1)

w(x 1 ,-h) - w(xj, 1 - h) - 0, x 1  , (4.2)

ILA w(xlx 2 ) - 0 (4.3)

has an unbounded, closed, connected aot of solutions En emanating from the pair

n 0). As stated earlier, the existence of solutions for the problem with discontinuous

density will be obtained by allowing n to approach infinity. The intricacies of the

limiting process will be described in Section 5. Here we describe a general setting for

obtaining connected sets of solutions by letting parameters approach limits and also prove

some estimates which will be used in the limiting process.

Consider a metric space X and a collection of sets A - (A n}, n - 1,2,... with

An C X for each n. By definition lim inf A consists of points p c X such that every

neighborhood of p contains points of all but a finite number of the sets An while

him sup A consists of those p e X such that every neighborhood of p contains points

from infinitely many of the sets An . The following result from Whyburn ([31], p. 15)

provides a tool for demonstrating the permanence of connected sets.

Lome 4.1. lot (A ), n - 1,2.... be a sequence of connected sets in a metric space such

that

(a) U An is precompact
n1

and

(b) limf (An

Then lim sup(A n) is a compact, connected set.
1 c,1

While our eventual goal is an unbounded, connected set S in R x (H0 (T) r) C (i))

a first step will be the application of Lema 4. 1 to bounded sets in X - R x HI(T). The

bounded sets to be considered are defined as follovs. For 8 c (0,1) and R > 0 let

-25-
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B(R) w x H (T)jwl 1 4 R and 0 < A 4 2A} (4.4)

and 
H0

Q {(PI'P2) L R2
1p [ 1 1] P2 [-1 + 8'a (4.5)

Starting with En from the previous section let

Fn,6,R - {(X,w) e En (X,w) c B(R); Vw(xl,x2 ) C Q6 (xl'X2 ) c T}

* and

FnR (maximal connected subset of Fn R containing (pn,0)} . (4.6)

~~~~Here En and Fn,, are regarded as subsets of R x H0IT) o w n wi
subset off xH(T). For (X,w) c En, Vw is

smooth and approaches zero as Ijxi + - so the condition Vw e Q8 is unambiguous. It

will be shown in Lemma 5.5(c) that un + Ad as n + w so that for each pair (8,R)

1 lim inf (F } contains (A ,0). It may also be assumed that the values of n under
n, 6,R d'

consideration are large enough so that Un < 2 Ad' making (U n,0) lie in B(R).

From Theorem 3.2, En  is an unbounded, connected set containing (U,*0). In Section

5 it will be shown that for each 8 e (0,1) and each R > 0 the collection U (Fn R
n

is precompact. Thus from Lemma 4. 1

G lim sup{FnRI (4.7)

is a compact, connected set containing (Ad,0). In Section 6 it is shown that G6,R is

still connected as a subset of ft x (HI(T) r) Co 'l(). Moreover, it is shown that GR

must contain a pair (X,w) for which lwi H1 R or for which

maxj{lw , w x1 =6
- . The set 1

1 L0 (T) 2mT

S = U G1
N=2 W ,N

will then be seen to fulfill the requirements of Theorem 2. 1.

The restrictions embodied in the definition of F reflect an intimate link
n,6,R

between the topologies in which there are unbounded solution branches and those in which

one can do analysis. The solution pairs (X,w) c S will not be unbounded in R x C(T)

nor could we hope to analyze equation (4.1) adequately for w having less than C0 '1

-26-

-- N- L N % -**-.5:n * i-.&---,



regularity. The singularity of f(P1,P2 ) for P2 = -1 and the lack of uniform convexity

for large values of (p1,P2) make elliptic estimates elusive. The behavior of Pn

compounds the difficulty. For solutions in F, , however, one can obtain the

estimates needed for the delicate compactness arguments carried out in the next section

and ultimately used in Le--a 4.1.

S.- For the remainder of this section it is assumed that n, 3, and R are fixed and

estimates are derived for solutions (X,w) c FS R . We suppress n, writing p for

On' The constants in the estimates may depend on one or more of the parameters n, 6,

and R and this will be indicated. Dependence on p+, p_, and h is still suppressed.

Recall that for large n, the number X is bounded above by 21d for solutions under

consideration. Thus while the size of X enters in the estimates it can be absorbed into

constants depending only on p+, p_, and h.

Lemma 4.2. If (X,w) £ Fn,, R  and m C R

f f Jvw, 12 C K f m Ivw2 < K2 f f W2  (4.9)
m I 1 S-1 I -21

where K, and K2 depend on 8. For c > 0 let I - {x2 C 111x 2i > ci. Then

m+ 1 qx m+2

"f f IVw12 4 K f vl 2  (4.10)
m I 2 m-1 I

where K3 depends on 8 and C.

Proof. Let C c O(R) be a function which has range in [0,1], has support in

[m - 2,m + 3], and is I for x, e [m - 1,m + 2]. Multiply equation (4.1) by C2w and

integrate over T to obtain

1 2 2 + w2 V,2WWX2ff 22 
2  -2 ff [pC' + w 2l 2ff PC2 ww 1

2 T (1 + w) T x2  T 2

-27-
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after an integration by parts. For Vw e Qa the expression (2 + w2 )/(1 + V 2 )2 is

bounded below by a positive constant depending on 6. Thus if Young's inequality is used

on the right-hand side of (4.11) and a small multiple of f pC2Ivwl 2  is subtracted from

the left side, the second inequality in (4.9) follows.
2f a

Now let v - wI and f. - for ij - 1,2. The result of applying x""

to both sides of (4.1) is
~av

apf (VWe) I (12ofljVwl -XOv •(4.12)

- ij Xp .

Let C denote a new cutoff function which is 1 on (mm + 1] and has support in

[m - 1,m + 2]. If (4.12) is multiplied by C2v and an integration by parts is used the

equation

2 av 3v av C2vif pC2f 2 f Cvf L1xij ax ax -2 v +2aS p 2v ,  (4.13)
TI j T j T2

is obtained. A simple calculation shows that the quadratic form determined by fij(P,P2)

satisfies

1 2 2p 1 1a a (11

fij il " (1 + p2)  1 +21 (I1 + p2)
2

(_(1-__1___ 1 13 (4.14)21

1' + P2 11 + p2)12 "

2 -21
for all (alP 2 ) c R2 and any il > 0. In 6 , pi <2 and a < (1 + P2 )  1 + 6 - 1

* The choice n " 1 = 1 + 62/2 in (4.14) yields

3
3 2 2f ai (S; L ( + a (4,.5

iji 1 16 1 2
Furthermore, for (ploP2 ) cQ60

Ifijl (4.16)

and so the use of Young's inequality, as before, yields the first inequality in (4.9).
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one cannot hope to obtain an inequality just like (4.9) for wx2P independently of n,

2x. for the discontinuity in the limiting density produces a discontinuity in wx along

.* x2 = 0. However, for -h < x2 < - c/2, p is constant and v satisfies

" fi(Vw) - 0 ( (4.17)

If w is extended to -2h + e/2 < x2 4 -h so as to be odd with respect to x2 = -h, it

will satisfy (4.17) in the extended region. Suppose now that C is a cutoff function

which is I on (m,m + 1] x [-2h + e,-:] and which has support on

(a - I,m + 2] x [-2h + c/2,-c/2]. Let z(xl,x 2 ) - wx2(xlx 2). Differentiation of (4.17)

with respect to x2 produces

S(V ) 0 ( 4.18)
ax. ij a

A If equation (4.18) is multiplied by 2z and the pattern of the previous estimates

repeated, there results an inequality similar to (4.10) but with the left-hand member

integrated over -h 4 x2 ' -C- The constant K3 depends on 6 and on c (through the

derivative Tx-). The estimate for x2 > C' valid for all n such that P - Pn  is
YX2

constant for x2 > e/2 (i.e. n > 1/2c), is done similarly. q.e.d.

The next leaa can be obtained using standard elliptic theory as in [261, Loma 3.2.

. *However, in the case of two independent variables, H5ider estimates follow from the

readily accessible results of Meyers (18] and we choose to use those here.

Lama 4.3. Suppose (Aw) c In,1* Then there is an a > 0, depending on 8, such

that for any m e a

.7 1 2 KO f f w2 42
I-I2w (% -24.19)

C ((m,m+l]xI) m-2 I

I ([m,m+Ilx) ml ,-2 TI.
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and for n > 1/2e

mu+3

Iwx212 2 f f w2  (4.21)
2 CO([m,m+l]xI ) m-2 I

where K0 , K1  and K2  depend on 8 and K2  depends on e as well.

Proof. The function w satisfies the equation

ail A i . - ).pw (4.22)

where

f 'x 1 ijl = f2 fij (tVw(x1 ,x2 ))dt • (4.23)
..p. 0

Since Q is convex, fi, satisfies the inequalities (4.15) and (4.16) obtained for

fi9" Let b be the matrix with components PTij (i,j - 1,2) and let u - Cw where C

is a function of x, which has support in m - 1 < x, < m + 2 and which is I for

m ( x, 4 m + 1. Let n be a domain with a boundary 30 of class C satisfying

[a - i,m + 2] x I C n C Em - 2,a + 3] x I

From (4.22) it follows that

div(A grad u) - div f + g in C (4.24)

u - 0 on ail (4.25)

where

f = wX grad 4 + (O,A¢pw)

and

g = -XCPWx2 + grad . (C grad w)

From Lemia 4.2 and the Sobolev emb' ding theorem it follows that

IfLP() L2) (4.26)

rnT for any p e [2,-). Since A satisfies a uniform ellipticity condition (cf. (4.15),

(4.16)), Theorem I of Meyers [18] yields
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grad ul () IWI (4.27)
,,Lp(nJ) zlw 2 ([a,u+,3) xI)

for some p - p(S) > 2 and a K depending on 6 and p(6). now from embedding theory

(cf. [13], (221) the inequality (4.19) follows.

Inequality (4.20) follows in a similar manner by using equation (4.12). one uses &

with entries pf i(Vw) in place of A, lets f - vA grad C 4 (0+ APv), and lets

g = -XVx 2 + grad C * A grad v. The Sobolev embedding theorem together with 1s 4.2

(with a cutoff function equal to 1 on 0) yield

IV ( IwI 2 (4.28)IV~pln)  L (m- 21( ,m+3]xI)

and meyer's result gives

Igradv KIWI 2 E (4.29)

This last inequality implies (4.20) and will also be used in what follows. The proof of

(4.21) is done similarly but with a cutoff function C which vanishes for Ix 2 1 < c/2.

To complete the proof we merely note that while the values of m occurring in the three

estimates may differ, we may let a stand for the smallest one. Likewise we let.'!
p - p(8) stand for the smallest one occurring. q.e.d.

The estimates obtained so far can be combined with equation (4.1) to produce improved

estimates for wx2

Theorem 4.4. Suppose (X,w) e F and m e I. Then

m m+4
(a) (f f Igrad{p(f2 (Vw) " Aw)1IP) 2 /P 1 K1 f f w2  (4.30)

M-1I m-3 I

where p = p(8) from Lemma 4.3 and K1  depend on 6.
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m+4

(b) fp(f 2 (Vw) - Av)f 2  ( K2 f f w2  (4.31)
Ca((a,U+lxI) ",-3 1

where a (as in Lema 4.3) and X2 depend on 6.

(c) g C(im,W411XI)1w 1 ( 13 m+4 V(4.32)
2 m-3

where 13 depends on 8.

(d) If p' - 0 on a convex subset Q1 of Jus + 11 x I, then

1w,12 C 14 f f w2  (4.33)
2C(a) m-3 I

where a is the exponent from part b) and 14 depends on 6.

Proof. For part (a) let F(x1,x 2 ) - P(x2 )(f2 (Vw) - Xv). Recalling the notation

v -wXl one has

- p{f (Vw)v + f (Vw)v - Xv)
U 21 x 1  22 2

and from equation (4.1)

3F S
- (Ofl(Vw)) + AWx2

- P(fll(VW)vx
1 + f 12 (Vw)vx2 + Awx2}

Since Iwx2Ip 4 8-(P2)i jX12 it follows from inequalities (4.9), (4.28), and (4.29) that

(4.30) holds with p and K1 depending on 6.

Part (b) follows from the embedding of W' #P in Ca for p > 2.

For parts (c) and (d) let N denote the L2 norm of w on the set

[m - 3,m + 4] x I. Since p is bounded below by p+, it follows from part (b) that

If2 lVw) - AwIC((m,m+lJXI) C T1

for a K depending on 6. Since w is bounded by K0 N from Lam 4.3, it follows that

If2CVw(xlx 2 ) C KI'N
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on [n,3 + 11 x I with K' depending on 6. Prom the same lea wx is likewise

bounded. Now

2 2i'

2p + P2 -P 2lf2lPlP2)1 22 + 2 2 Pl

2(1 + p 2)
2

IP2 1 IPl1

: 2(1 + 8') 263

and so the estimate

IwxI (K3 N
i ~2C( (n,m+ 1] xI)

follows.

For part (d) let Pi m vxi(xlx 2 ) and WX " wx ( S 2 ) for i , 1,2 where (xlx 2 )

and (;1,;2 ) are in A). From (4.19) and part (b) the Ce  norm of f2 (Vw) on n is

bounded by K0N where K0 depends on 8. Thus

.f2 lp11p2 ) - f2 lPll 2 ) + f2 p Pl,2) - f2 (;1 0;2)I CONA* (4.34)

where A denotes the distance between (xlx 2 ) and (;1,, 2 ). From lama 4.3 the

norm of wx on A is bounded by XM. Now for (PlP2) C Q8 1 f2 1  is bounded above

and f2 2  is bounded below by positive constants depending on 6. If these estimates are

used in (4.34), the result is

IP2 - ;21 < K4.NA'

that is, wx2 satisfies the desired H5lder condition. This last inequality, combined

with part (c) yields the C" bound in (4.33). q.e.d.

Laea 4.5. Let A be any relatively open subset of T on which the density p is

constant. Then for any solution (Xw) c Fnr, w is real analytic on n.

Proof. Extend p to be p_ for x2 C -h and to be p+ for x2 •1 - h. Extend

w to -2h < x 2 4 -h to be odd about x 2 - -h and to 1 - h 4 x2 4 2(1 -h) to be odd

about x2  1 1 - h. Then w satisfies (4.17) in each region where p is constant.

-33-

...

-. . ... " , - . " -. . -, . . . ,,_._.- ..._._. 4- . . .-.. - . ?' " . -. . 4. . '
., -, . ,,. ',,, ..; -';.,.. :.,. .. ..%, .- - . .. - - , , .-.. .-,,%:'' ,.., " , , - . ,. -', ,"., "'



since w C C1' in Q), the Schauder theory ([13], Chapter 6) shows that w c £ (

Then the results of tMorrey ([20], (21], Chapter 6) show w is analytic. Alternatively a

change of variables back to *(x,y) which is harmonic where p is constant, yields

analyticity for *. and, since A> 0, for y(x,4.) and w(x1 1 x2 ) (cf. (2.34)). q.e.d.
ay

The estimates up to this point, regarding the restriction of w to [m,m + 1] x I.

have been independent of m. Estimates which reflect the decay in w as lxii + - will

also be needed. Before giving these estimates we make the simple observation that since

w)p -1 for any solution ()X,w) c F end since w - 0 for x2- 1 - h, we have

0 4 w(x1,x 2) 1 in T .(4.35)

*Recall that we are treating the case e > 0 (cf. (2.41)) and hence w > 0 in T. In the

case e <0 one would have -1 4 w 40 in place of (4.35). For e >0, !-<0on

(0,-) x 1and this is used in obtaining the following bound.

Lemma 4.6. For (X,W) c Fn,, /

max w(s~x2 ) C R(I. (4.36)
x(I 

8

Proof. For any s c (0,-) there exists an s)c (9/2,s) such that

R2 ' x2f 2 2  2 2
sf2 1 2 I

by the intermediate value theorem. Since w is decreasing for x, > 0

R2 x 22
;0) fJfw fxjw(,x ) dx2  (4.38)

2S 0 1 1I

Combining these last two inequalities one has

:'.~>N ~ ~ . ~ ".* - *( ~ j~p~ PS j~5 ~5~4,55S4-34-S4

%



max Iw(;,x )2  4 2 f wl;.x 2); 2(Xx2 )dx 2
x2e' 2

2R
2

A-.

Since 2x o s, inequality (4.36) follows. q.e.d.

'I.
'

Now we combine Lesma 4.3, Theorem 4.4, and Lemma 4.6 to obtain the following

estimates, wherein a is the H6ider exponent from the earlier results.

Corollary 4.7. Let d(m) - min(1,R/Vm). Then for (C),w) e Fn,8, R

lWiCo, Um ,m)xz Kld(m) , (4.39)

Iwxll e(&_xl ' K2d(m) , (4.40)

IWx 1 , K3d(m) (4.41)
2a

. c ((m[,.s)xI})

and

lp(f 2(Vw) - )wl 4 K4d(m) (4.42)

where $1 is any relatively open subset of T on which p is constant and Kit

i = 1,2,3, depend on 8, but are independent of a, n, R and n. The constant K4

depends only on 8 and n.
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5. Precompactness of Approximating Flows

In this section it will be shown that U FnR is precmpact in R 0 H(T). The
n

use of Lea 4.1 will then enable us to obtain certain connected sets of solutions of

problem (4.1)-(4.3) as a step toward obtaining the set S in the stronger topology

Nx (HI(T) t)C 0 '1 (T) given in Theorem 2.1. Throughout this section 8 e (0,I) and

" R > 0 will be fixed. It will be shown below in Corollary 5.3 that for each fixed

n, Fn,S,R is precompact. The heart of the compactness question concerns a sequence of

*' solutions (Anw) Fn where n - 1,2,3,.... The estimates of the previous section
np ne n,8,R

allow one to extract a subsequence of these pairs which converges to a pair (X,w), the

1
convergence being weak convergence in HO(T); norm convergence in C, uniformly on

bounded setsg and norm convergence in C0
'

1
, uniformly on compact subsets of

jT- {x = 01. Moreover, from Leama 4.2 it can be assumed that v - w has
2 n ax n

a --was its weak H (T) limit. Henceforth it will be assumed that a subsequence

has been chosen and renumbered so that (A n ,wn) has the aforementioned properties.

Moreover, it can be assumed that wn # 0 for all nj otherwise there would be a

subsequence with second components all zero and thus convergent. The notation

I (X2 C 2 > 0); T t - R x I* (from Section 1)t T, - m,-) x I; T -m) t l

and d(m) from Corollary 4.7 will be used.

Theorem 5.1. Suppose (Anw n ) e Fn,8, R  for n 1,2,..., that An A, and that

wn + w weakly in Ho(T). Then

(a) 4 Ad and

(b) wn *w strongly in H1 (D) for any bounded B C T.

(c) The function w is real analytic in T - {x -0, even in x and satisfies

2C eve inx(mn)stsfe
IWI c, 1 (Tm)  Kd(i) , (5.1)

jWx I C Kd(m) . (5.2)
.'-1 C (T )

m
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The function wx2 has extensions to T differing on {x2 = 0) in general, and

1w 1 ( Kd(m) (5.3)

2 CQ(Tt)
m

while

IPd{f2 (Vw) - Xwi C a (T Kd(m) (5.4)

Here K and a depend on 8, but are independent of m and R.

(d) The function w is a solution of (2.36)-(2.39) for the density pd

Proof. (a) From Theorem 2.3 of (4], we have X -C Pn" It will be shown in Lemman n

5.5 below that p n converges to Xd as n , whence X 4 Xd"

(b) The convergence of wn in CO' on compact subsets of T - fx 2 - 0} together

with the gradient bounds (4.20) and (4.32) show that wn converges to w in HI(R),

yielding part (b). In fact, the Schauder theory provides C2 'a  estimates on compact

subsets of T - {x 2 - 0) and thus wn will converge to w in C2 on such sets.

(c) The analyticity of w follows as in the proof of Lemma 4.5. Since the

estimates in Corollary 4.7 are independent of n, the function w - lir wn inherits

properties (4.39)-(4.42) and the estimate on wx2 extends to the closures T

(d) Recall that wn converges to w in C2 on compact subsets of T so equation

(2.35) holds on those sets. The conditions (2.37) and (2.38) are also preserved in the

limit. For 9 e C(T) one obtains

ff P f (Vw ) a n ff P n a(w n )

T xi T ax2

from (4. 1). Since the vectors grad wn are uniformly bounded and converge to grad w on

T , it follows that

ff dfi) -v + TX f f d d axw
T i x T ax dS 2 w) T d~ 2

-- A(- - P+) f w(xl,0)(xl,0)dx 1 , (5.5)

showing that w satisfies (2.39). q.e.d.
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Lema 5.2. Suppose (A,w) C Fn,6, R  and that 8 1 - (A/n ) > 0. Then for m > 0

lvii K (5.6)
HO(Tm) m

where K depends on 5, R, and 0.

Proof. Since 1i1 ( 4 R by assumption, the inequality (5.6) need be demonstrated

CT)
only for m larger than some m 0. If equation (4.1) is multiplied by w and integrated

over TM  it yields

2 +w

T f 2 Ivwl 2 
= - f Pn.(,x2)f (VW)dx 2 -

T n (I + W x 2 1 T
21

f Pnw(X 2)fI(VW)dX2 + - f f PnIVw (5.7)

I n Tm

from the characterization (3.2) of Ui For m > m 0 , m0  depending on 8 and R,

(2 + w 2 )/2( + w2) 2 > 1 - (8/2) and -wfI(VW) 2wI for x, > m. Hence, from (5.7)

OP + I f1 vw1 2  1 _ f Iw(mx 2)11WxI(mlx 2)dx21
T MI

which, with Corollary 4.7 and the Poincar6 inequality, provides (5.6). q.e.d.

Corollary 5.3. For each fixed n, FnR is precompact in R x H1(T).

Proof. Let (Xwk), k - 1,2,3,..., be a sequence in FnaR. If a subsequence

converges to U ,0), we are done. If not, then - n. + 1vki H I ( ) > 0 for all.. .5H CT)

large k. Suppose a subsequence, still denoted (k,Wk) w is such that Xk converges to

nas k + . Since wk lies in the ball of radius R in HI(T), uk lies in the ball

of radius K2 R in HI(s) by (3.8). According to [41, section 5, the collection

W { k,Uk)), k = 1,2,... is precompact in R x (L2 (S) n C 0 (S)) (the exponent a in 1.4 of

[4) is 1 as established in the discussion following (7.14) of that paper). It follows

that a subsequence, still denoted (Ak,uk), converges to (Un ,U) in

R x (L2 (S) C0 (S)). From local elliptic estimates one sees that (U n,U) is a solution
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I2

and that the uk converge to u in C0 (S). Then Theorems 2.3 and 2.4 of [41 show that

u - 0. From this information one can conclude that the y derivatives of the

N% corresponding *k are bounded below by K > 0, uniformly on S and uniformly in a

for m large. Elliptic estimates, used once more, show that the L2 convergence of

uk  to zero implies convergence to zero in H1(), and (3.7) implies convergence of wk

to zero in CI(T). However, from an earlier inequality it follows that

thIHi(T) ) w/2 > 0 for all large k, a contradiction.

From the last paragraph it is clear that Xk /y n C S < 1 for all k and thus (5.6)

holds for all wk, uniformly in k. The precompactness of (w k, k - 1,2,..., in

H(B) for each bounded set 3 C T follows as in the proof of Theorem 5.1. These two

properties combine to yield precompactness in R x HO(T). q.e.d.

To show precompactness of U Fn,5,R it will now suffite to show that the sequence
n

((XnWn)), n - 1,2,..., selected at the outset of this section, converges in Rx Hi(T).

We next show this together with some of the properties of the branch S required for

Theorem 2.1. For the case lim An - A. < xd' we need merely quote results already

established to see the convergence of wn. For X - Xds a delicate analysis must be

carried out using the nonlinearity in equation (4.1).

The case X < Xd

Theorem 5.4. Suppose (An,Wn) e Fn,d,R satisfy n + A < Ad and wn w weakly in

O1(T) as n + -. Then

(a) wn  converges to w strongly in HO(T).

(b) w > 0 in T and w < 0 for x 1 > 0 and x 2 c I.

Proof. (a) It will be shown in Lem 5.5(c) that P. approaches Ad  as n * -.

Hence inequality (5.6) holds for wn, uniformly in n for all large n. This decay in

the tail together with Theorem 5. 1 (b) yield strong convergence in HO(T).
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(b) Prom (5.5) it follows that

T i j
,5' for all nonnegativ* 9 c C(T), where i s defined by (4.23). Hence from the strong

maxum principle ([13], Theorem 8.19), either w = 0 or v > 0 in T. The function

1w ai in H1 (T) by Leoa 4.2, and is the weak H1  limit of v. w . The

equation (4.12) is satisfied by (A niVn) and since vn < 0 for x, > 0 one obtains

ff Pdfij(Vw) V.- y 4 0
T ij

for all nonnegative e C0 (O,*) x ). Prom the strong maximum principle v 3 0 or

v < 0 on (0,-) x I, corresponding to the case w = 0 or w ) 0, respectively. If

w E 0, then the functions vn , which are even in x 1 and decreasing in x 1 on

(0,) x I, must converge uniformly to zero on T. The gradient estimates (4.20) and

(4.32) show that Vn converges uniformly to zero on T and thus wn converges to zero

I in C0' I(T). The analogue of (5.7) taken over all of T yields

2 + (mnx

n /x 2  iVn 2  n 2(
ff Pn 2 Vn1 <i I PynIVwn (.8

T 2(1 ) + (v)) n

Since - converges to - < 1 and IVwn + 0 uniformly on T as n +-, (5.8) leads

n d aA

to a contradiction for large n. Thus w > 0 on T and < 0 for x, > 0. q.e.d.ax1

The case A "d

As stated earlier, it is assumed that we are working with a sequence

(Xn'Wn) e for which An + A Ad and wn converges to w in the weak topology

of H0(T) as n + -- In addition, the conclusions of Theorem 5. 1 hold. The plan here is

to show in Theorem 5.6 that the weak limit is w = 0 and then to show in Theorem 5.7 that

wn + 0 strongly in HO(T) so that the limiting point is the bifurcation point (A d,O).
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To begin recall that un  is defined by

-f Po' 2
1 _ mx In(5.9)

0 1 n2

r

Let *n (x 6~ ) be the associated positive maximizer normalized by f Pn02 1. The

function en  satisfies the Ruler equation

(p . =lnjnp n . (5.10)

An associated quantity 
5n is defined by

f f p'u 2 
-f Pn(u.) 2

a max 2 (5.11)
n) "UH (I) f nu2

I

for each X e R. Let n Yn nX2) be the positive maximizer in (5.11) when X A n;

again suppose that f p .Y 1. The function y n satisfies the Ruler equation
ngannn n n n

~(PnYn) - Xnr. n  - an(Xn)pny n .(s

Of course, n and yn both vanish at the endpoints of I - (-h.1 - h).

n nI'amma S. 5. Let (X n wn) be in Fn 7R hen

(a %(X n ) < 0

(b) Assume X + X as n +. Then the functions {6 and (y}, n - 1,2,...
n dn n

are bounded in C (I) uniformly in n and for each c > 0 converge in

C () r) C (I ), I - I n {1x 2 1 > s), to the function

O(x2 + h) x2 4 0Yd ah 5.3

h (x2  I + h) x2 ; 0

where a2  3/h2(p h + pl - h)). Let

- [ u2 2
I (- )u (0)

I+
Q(u) ( 2 f(5. 14)

dI

Then Td is the positive maximizer of Q(u) for u c H0(I) and
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aQ(j

d dI

where X d  is defined by (2.40).

(c) lim Pn = X d
n w

Proof. (a) From the characterization (5.11) a is a strictly increasing function

of X and from (5.9), an(Ijn ) 0 0. As noted in the proof of Corollary 5.3, for

(AW)c1 \((n,0)}, An < )in and so a (X < 0.
n# n n,,RUn') n<jn n n

(b)-(c) Since evaluation at x2 = 0 is a compact mapping for functions in H0(I),

the maximum of Q(u) is attained, and the form of Q ensures that this maximizer must be

linear on I+ and 1-. A calculation shows that Yd is the positive maximizer which has

the normalization f 2  1 and that MY - .

I
Suppose the maximizer e for (5.9) is renormalized to have max - 1 on I and

that its maximum occurs at x2 " Since 0n(; 2 ) = 0, an integration of (5.10) from 2
2 ~ n22

to x2 yields

x2
e 2 f o n

x2

and so I6(x 2 )1 C (p_ - p+)/p+. This bound easily implies that the eigenfunction

normalized by f P 1 must also satisfy Iej 4 K1 where K, depends only on p
I n

and h. On I., that is, where Ix21 > C, the derivative p. - 0 for n > 1/c and

hence 8"- 0. It follows from the Arzela-Ascoli theorem that a subsequence of {O}
nn

converges as asserted to a function e. which must be linear on 1+ and I-. Since

f d-i1, a calculation shows that 0 must be Td and the uniqueness of the limit

shows that the whole sequence converges. The maximum value in (5.9) converges to

(P- P+)Yd(0)
• f (Y )2

and thus dn *X as n +.
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All values of A under consideration for a fixed ni lie in the interval (0,u.a

and since a is increasing, % (0) c %(A) C st (Un) -0. Moreover, the quantity Q(0)

is readily seen to be bounded below by a negative constant K2 depending on ptand h,

but not on n. By integrating the equation (5.12) for ynam was done with (5.10) one

finds that Y'I -C K3 on 1 and IY;I -C 146I~n(Xn)Ion 1 frn)/. Toeeta

like 0 1 converges to d' it suffices to show that I(A) .0 as n +-

Since X + A, lin + Ax and ai (Ua) 0. the desired convergence will follow if it is
n dr d# nn

shown that a has a modulus of continuity independent of n. To see this let ur be aj

2
maximizer associated with a nCr) in (5.11) and suppose f p u U - 1. Then for r > a,

a (r) -- r f 0Aur ~u)

r nI

( r - )K (P- - P)+ aC)(51)

since ur is an admissible function in the definition of a C). Since *nis an

increasing function, it follows from (5. 15) that

IQ n r) - a ~ 4 Kt6 Ir - sI

with 16 independent of ni. q.e.d.

Theorem 5.6. let 8 e (0,I) and R > 0 be fixed and suppose (A nwn) e ' , for

n - 1,2......If X A4  and w~ converges weakly to W f H I(T) as n + a, then

(a) w 0 in T.

(b) 1w.1  and I~wnI converge to zero uniformly in T as n .

Proof ( a) The argument revolves about the behavior of wn for large x, and that

behavior, as we shall see, is reflected in the projection of w. along the eigenfunction

of (5.12). Let

wn(xilx 2 ) F Vn (x)IN(X2) + A%(Xltx 2 ) (5.16)

where
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n(X 1 ) - f n(x2 )wn(XlX 2 )Yn(X2) (5.17)

with y normalized by
f92 

- . (5. S)6
nI PnYn

It follows that y and R are orthogonal with respect to p for each fixed xi:

fPnnrnd 2 -z0, xi e (5.19)

Let

Gn(xl) Ynn 1 ) (5.20)
n nx 2

If the principal equation (4.1) is multiplied by y n and the result integrated over I

there emerges

dx n n YnPnvn + I Ynpnf2(Vvn) (5.21)

after an integration by parts in the integral containing f2. A simple calculation shows

that

f2 (P11 P2 ) P - " A(plP 2) (5.22)

where

A 34 +43 2 2
A " (3P2 + 4P -p 1)/2(1 + p 2 ) • (5.23)

From equation (5.12) for y one has

fY'P(w ) ,.(py.)

% ( (n)w pny - Anfwp'yn

and the use of this last identity with the expression (5.22) in (5.21) yields
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Gal -w 3s (~w ) fpV -I 2 + oyQA(Vw) (5.24)

n n n In n x 2 e

With the use of (5.16) the second integral in (5.24) can be written

V~pn(1n n( I)2 I - 2

+ 3V f * + f Y;Pn(R n (5.25)
n 2

where here and in what follow* the convention (Rh)x is used for % use

the definition of d in (5.13) to compute

- 1 'a T f3/2 3/2 (•- 2 (5.26)

n~ft I I p-h + p+ (I - h)] hy (I - h)

Lince the expression (o/h2) - (p+/(1 - h)2 ) - e (of. 2.2) is positive by assumption,

> 0. Only the positivity of ;is important in what follows so to simplify notation

we omit the tilde. We conclude that for any e > 0 and all n > M(g)

, 2 .3_21 - ( 2 , x

The use of this last inequality in (5.25) together with Young's inequality gives

13 f Y (Vn )2 21i~ 2 + y 2 n'~x(.7
2 1s 2

where K, depends on c, but is independent of n and x 1. From the form of A given

in (5.23) and from the decay of wn and wn  as x, + - given by (4.39), it follows

that

IA(V%,1wn ' 2((F + 73 + IVR 12 ) (5.28)

for x, larger than sam value X. The use of the last two estimates in (5.24) yields
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.F.

JG; + a (An)F + .121 2F 2 + X(C) f , ((7l 2 + P3 + IVR12I (5.29)I n

for n ) H(E) and x, ) X where T(e) is independent of n and x1 .

Note that the term Gn approximates FI(x 1 ) for wx2 small and thus (5.29) is akin

to a differential inequality for Fn . The aim is to show that in the limit as n + - and

a n(A n ) + 0, (5.29) is inconsistent with having a positive function w(x1 ,x2 ) which

V decreases in x, for x, > 0. To arrive at this contradiction we first estimate the

integral in (5.29).

If the principal equation (4.1) is muIltiplied by wn and the two sides are

integrated over I there results

~n n x f2 (w n n f P'wn + f Pnwn ax f1(n
1 2 1

(5.30)

n o f Pw 2 + d f Pw.f(Vw f P(w.) f (Vw
I n 1 x I 1

Let

Un(xl) - f Pnwnfl(Vwn) (5.31)
I

Then since f2(PIP2) P2 (2p2 + 3p 2 + p 1)/2(1 + p2 )
2
, equation (5.30) yields

(w )2

I PnlW ) 2 + f P 4 (wI -X 
" n o w + d - Un(X 1 )

I 2 1 )x 2  n 12  n ,
(w.

1 02 {2(w )3 + 3(w )2 + (wn1  } (5.32)
2 0 + (wn) )2 2  x

Now from the representation wn  nyn + Rn,the equation (512) foryn
thn (5.2)fo and the

orthogonality (5.19)

2 F2 f 2 + 2 (5.33

2 I2

A second use of the representation for w yields

2 n"~ + A1 f ow~ 2 -a( ) + A f R 2~ + f P( )2 (5.34),n w n x n P n n n"af nn n x 21 . 1

I 2 I 2
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Now define T by
n

n u () f 0(u' (5.35)

f uo,,y -o
I

Since an extra condition on u has been added to the characterization of u n in (5.9) it

is natural that T > un and this is shown in (U41, Lam a 3.1). An argument similar to

that given in LInma 5.5 shows that as n + - the numbers Tn. approaches a limit Y. >

d o that An/Tn + Xd/ o < 1. Thus 1 - Xn/1 n ; 0 > 0 for all large n. Since

f Rn(x 1 X2I (x 2 )yn(x 2 )dx 2 - 0
n2

for each x 1 ,

2 n2 2
Xn f PRn 4 f p(R) ( (1 - 6) f p(R •

n 1I 2 1I X

The use of this last inequality in (5.34) gives4

2 + A w 2 ;0 -a )F 2 + j (R 2 (5.36)
I 2 2

for all large n. The inequality (5.36) will be used in (5.32). First, however, note

that because of the decay given by Corollary 4.7, for any e > 0 there is an X(E),

independent of n, such that

(w n ' )22

fn 1+(w) (o -C) 2 (5.37)
n x 2  In

provided x1 > X(e). This same decay coupled with the decomposition (5.16) of wn and

Young's inequality gives
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a4

2___ _ 3 +3w2 + w2
) x 2

n (1 (W 2) f 2  nx 2  f1n

1 22

for x1 > X(c) (taking X(c) larger if necessary). The last three inequalities, with

c chosen so that X2c < 8/2, combined with equation (5.32), produce the inequality

0. f p (R~ ) - an (n )F2 + 01 - 2e) f 0 (wn)2 4C U,(x) + K1?F3 (5.39)
I x2 - n

valid for n > N(e) and x1 > X(c). 1o further decompose terms using Fn and Rn note

that

f P (W 2  (- () 2 I 0nY + 2S ~ (Rn)x + f (R)
n n x y fPY n n

2 (n + f ()2 (5.40)
I 1

using (5.18) and (5.19). It can be assumed that e is chosen so that 0/2 < 1 - 2e.

Then since an(An) < 0 it follows from (5.39) and (5.40) that

- ~2 U' K' 3

C%)2 + f Pn VR ,Fn (5.41). (, )2 + I onl nl: n +  .

For these same parameter ranges, the use of (5.41) in (5.29) yields

IJG + a,( , )F, + .,. 2F n 4 (5.42)

where e is positive and K depends on e, but not on n or x1 . Since Fn(xl) + 0

as x, + -, uniformly in n, we may assume that X(e) is chosen so that KFn(xl) < C

for x, > X(e), leading to
* IGA + nlPn C + e(A 3 + KU, (5.43)

- Now one can integrate the inequality (5.43) (without the absolute value taken on the left

side) over the interval [x,,x11  where X(W) < x1 < x1 < a. Next let n + - using the

results of Section 4 and the fact that an(n) * 0. Finally let x I + to obtain
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- . Yd -(a - 3e) f V2 (1)4a - X f Pdwfl(VV) . (5.44)
I T X2 X I I

Here w is the weak limit in HI(T) of the sequence (wn )  and V is defined in analogy

with Fn in (5.7). Znequality (5.44) can be written as

f){ - Xw(xx 2 ) v (e - 3) f" 2 (s)d (5.45)I xd d 2dX dX2
x2  x 1

Now from the mean value theorem

C 1 1w (x 1 .)I (5.46)
Yd I' 7 L ) L (2)

and from Theorem 5.1(c) the right-hand side of (5.46) approaches sero as x +. It

follows from the last two inequalities that for all large x,

2 f pw, yd (a - 3c) f F2 (s)d (5.47)z(5.47)

As in the proof of Theorem 5.4 one concludes from the strong maximum principle that

wxl < 0 in (0,-) x I or that w E 0 on T. The inequality (5.47) insures that only

the latter can occur completing the proof of part (a) of Theorem 5.1.

For part (b) recall that wn was taken to converge to w uniformly on compact

sets. Since wn has its maximm on the line x1 - 0, the convergence to w = 0 is

uniform on T. Lomia 4.3 and Theorem 4.4 show that IVwnI + 0 uniformly in T as

n *u. q.e.d.

Theorem 5.7. lat 6 £ (0,1) and R > 0 be fixed and suppose (X nwn) C Fn , R  for

n - 1,2,.... Assume An + X and wn  converges weakly to zero in Hi(T) am n * -.

Then wn convergem strongly to zero in HI(T).
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Proof. In the previous proof it was shown that the inequality (5.43) holds for

n > N(e) and x, > X(c), the latter restriction being made solely to insure that wn is

sufficiently small in C (Ix1 ,m) x !). From the previous theorem we know that wn

approaches zero in CO , (f) and thus inequality (5.43) can be shown to hold for all

x1 ) 0. This will enable us to relate the H0  norm of wn to the quantity Fn(0) in

such a way as to show that wn  approaches zero strongly in H1(T) as Fn(0) + 0.

From (5.43) one obtains the two differential inequalities

d- {G - KUn} ( -an(X )F - (e - 3e)F (5.47a)
d n n n n n n

and

d (G + KU -a)( )' - (e + 3)F 2  
(5.47b)

dx 1 n n n

valid for n > N(e) and for all x, ; 0. As noted earlier, we have

wnlx 1 Kw
ICU f -nY +(w) (5.48)

" G+'n= -n I + (w n) x"2n{ Y ± ' -n} " 1.

Since

w n x< j 1(.9

Sn L .(I) n L-(I)

and jVwn * + 0 as n + -, N(e) may be increased, if necessary, so that for all
L CT)

n > N(e)

* (1 + e)F 4 (1 i K(+ In =fI t)[nYnl'nlx1 4 Gn * KUn
I

n (1 -+) f Pnn(Wn)x 1

= (1 - c)F' . (5.50)n

Recall that FA is negative.
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I I

The expression a n + (e + 3e)F n 1( is monotone decreasing on 0 ( xI < * and

approaches an (X) < 0 as x, + -. Let [Znw ) be the subset of [0,-) on which the

expression is nonpositive. Suppose first that Zn - 0. If the inequality (5.47b) is

multiplied by the positive quantity -(Gn + KUn), the result integrated from x, to -,

and use is made of (5.50), then

(1 + C) 2(Fn) 2  ( )F +- (e + 3E)F ) . (5.51)
n n n n 3 n

Since Fn'(0) = 0, it follows from (5.51) that

F 2 (0)(a ( ) + 1 (e + 3e)F (0)) ) 0 ( (5.52)
n n n 3 n

However, the assumption that Zn - 0 or that an(n ) + (e + 3c)F n(0) ( 0 is in

contradiction to (5.52), given that a (X) < 0.
n n

We now know that Zn > 0 and that

n(Xn} +-! (e + 3e)F (Zn ) a (Xn ) + (e + 3e)F (Zn ) 4 0 (5.53)
nn 3 n n n n n n

Using this inequality in (5.51) one finds

(1 + e) 2 (FI( 2 2( 2 5.4
2n(x1 )) 2  

(1 - c)(e + 3
e)F (xi)(Fn(Zn) - Fn(Xl)) (5.54)

on [Z ,). This last inequality yields4. n

F(Z) 2

f F2 (x)dx1  f -F' dt
Z 0 n. n

F (Z
F n  n  t 2dt

0 tpFn (Z) - t

K, • IF 3/(Z n )-nn

IF; • 3 /2(0) . (5.55)

On the interval [OZn]

-a (Xn) (e + 3c)F(x 1 )
n nn

and the use of this in (5.47a) yields

(G - KU ) C ((e + 3E)F 2  (e 3c)F 2

dx1  n n n n

= 6eF2  (5.56)
n

We now carry out a process similar to the one above of multiplying (5.56) by -( K
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integrating from 0 to x1 , and using (5.50) to obtain

(G" KUn)2 I x 1 ,I+ F 3 x

- :c 6W + e) - X C [Zj(5.57)2 10 3

Now (5.50) can be used to show that G. - KUn - 0 at x, - 0 and to bound

(Gn(xi) - KUn(Xl))2  above by (1 + ) 2(F(x))'. Hence fro. (5.57) one has

(1 + C)2(.(nx )o 4e(1 + 9)(F(0) - F (xI)) (5.58)
nA

* valid for x, C [0,Zn]. We use this estimate as follows:

2n n (0 ) 2

0 
2 (x )dx- f tZdt

F n(: -n0 F (0
n n

S of t2dt

Fn(Zn ) / 3101- t3

n

4 K2 Fn
/ 2 (0)

and combining this with (5.55) yields

(x )dx 4 K3F (0). (5.59)
0

Now we use inequality (5.41) which, like the inequality (5.43) used at the outset of

the proof, will hold on 0 4 xI < - provided n is sufficiently large thereby

guaranteeing that wn is sufficiently small in C0 01(i). From (5.41) it follows that

(F;)
2
dx1 + f f P ndXVR 1 2 K 3  dx 1  (5.60)

0 OX 0

since f U'dx1 = 0. The Poincarg inequality yields
0

nn 4 f f -CK YRn2 (5.61)
':"0 1 0n n •  4 [ z °n n
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now, since w.1 is even in x, and has the form w. - n + Rn (cf. (5. 16)-(5. 19)) it

follows from the last three inequalities that

2w~ T K(F3/2(0) + F5/2 (0)) -(5.62)

By Theorem 5.6 'n(0 ) + 0 as n *-and hence Vn converges strongly to zero in

* -~HO(T). q-e-d.

The result just completed, together with Corollary 5.3 and Theorem 5.4, yields

Theorem 5.8. For each 8 e (0, 1) and each R > 0 the set U %P , is precompact in
n

R x HO(T).

The concluding result of this section, in which the HI topology still plays the

major role, is

Theorem 5.9. Let 8e (0,1) and R > I be fixed. Then

4 (a) The set

G lim sup Pn8
6OR n ,,

is a compact, connected subset of D(R) (defined in 4.4) with (k.00) tG'8,R'

(b) Each ()X,w) in G8, satisfies parts Ca), (c), and (d) of Theorem 5.1 and

Vw(xl'x2) fQ6 fo l x1,X2) t T C Tt.

Cc) If (X,w) t 0 ,\(dO) then X~ < X d# w > 0 in T, and aw/Dx1 < 0 on

(0,M) X I.

Proof. (a) From Lem 4.1 and Theorem 5.8 one can conclude that G8 ,R is a

compact, connected set in B(R). It was shown in Loma 5-5(c) that U + as n -

and thus (X d 0) e£ 8R

Parts (b) and Cc) follow from Theorem 5.1, 5.4, 5.6, and 5.7. q-e-d.
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6. The Set G as a Subset of Rx (HI(T) r C0' 1(?)) 

8,R0

To show the existence of the unbounded, connected set of solutions S described in

part (a) of Theorem 2.1 two issues must be confronted. The first is the connectedness of * V

G when the stronger topology of HI(T) r) CO, 1(f) is used in place of the H
6,R00

topology for w. The second is roughly to show that in the set G8,R there are solutions

for which w has size R in HI or size 6-1 in C0 ,1. If this can be done for any

R > 0 and any 8 c (0,1), then the unboundedness of S will follow. It will be shown

that in G 8,R there is a pair (A,w) for which IWIH i = R or for which

2 Q6 for some (xx 2 ). This almost resolves the second issue. The final

step is to show that for sufficiently small 5, Vw cannot take values on that part of

3Q where P2 = -1 + 6.

Theorem 6.1. For each 8 c (0,1) and each R > 0, the set G8,R is connected in

R x (H0 (T) f C
O'1 (f)).

Proof. Since GS,R is connected in the original topology of R x HI(T), it will

suffice to show that on G6,R the stronger topology coincides with the original one.

That is, if solutions (AkWk) of the problem with discontinuous density 0d converge to

(X,w) in R x H , then wk converges to w in C (f). The H8ider estimates in

* Theorem 5. 1 are satisfied by each wk, uniformly in k. The compactness of the

collection wk in C0, 1() is then assured and the desired convergence follows

immediately. q.e.d.

Recall that for the density pn the set of solutions n emanating from (un,0 ) is

unbounded in R x HI(T) and that FnR is the maximal connected subset of

o(,w) e EnjVw(Xlx 2 ) C Q61 (x11x2 ) L T}

which contains (U n,0) and is contained in B(R). We can assume n is large enough so

that Un < 2Xd and hence for each n there is a pair (I ,wn) C Fn,8: R for which either
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A) Iwn 1 1 R
so

or
_ . (n ) , (n ) , ) e a f o s m e ( (n ) _ (n ) )

B) Vwn(xI x2  ) Q for ( x 2 a 1 "'

If alternative A) holds for an infinite sequence of values for n, a subsequence,

still denoted by (N nn) may be chosen so that X n + X and wn converges weakly to

w in HI(T) as n + -. Theorems 5.4 and 5.7 show the convergence to be strong in H1

0 0

and hence there is a pair (,w) in G with l H R

If alternative B) occurs infinitely often it can be assumed that a subsequence is

chosen so that the following result is applicable.

Theorem 6.2. Suppose (Inwn) n,8,R , n = 1,2,... and that for each n there exists a

point (x(n),xin)) in f for which

7w--.(n) (n)Vw n xl x 2 ) C 3Q8

Then there is a pair (X,w) e G6, R  and a point (X1 ,X2 ) such that

Vw(; 1 ,; 2 ) C aQ , (6.2)

where, if ;2 . 0, the limit from above or below x2 - 0 is intended.

Proof. The proof is divided into three cases according to which part of the boundary

3Q8 is in question. Once again a subsequence can be chosen and renumbered so that wn

converges to w in 0l(T), Vw e Q, on T, and one of the following three cases is

relevant.

Case 1. law. (x(n),x(n) )I , 8-11 n - 1,2,...

First note that Corollary 4.7 quarantees that V decays to zero at infinity,

uniformly in n, so that (x(n),xin)) remains bounded. Without loss of generality

assume that these points converge to (; 1 f; 2 ). From the HIlder estimate (4.20) it is

clear that 3wn/3x 1 converges uniformly to 3w/ax 1  and thus

implying (6.2), since Vw e Q6.
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av

Case 2. axn (x Anxn ) ) _ 6-1, n _ 1,2, ...

An with Case I it can be assumed that (x n) Axn)) it;,2) f 2 JO 

the H5lder estimate (4.21) applies to give

aw (

and hence (6.2).

x- 0. Fom Leme 4.3 it can be assumed that both w. and 3wn/3xSuppose X

converge uniformly in a neighborhood N of (;,00). The functions Own/ax2 cannot, in

general, converge uniformly since Ow/ x2  is discontinuous along (x2 - 0). However,

from (5.3), the limits of the x2  derivatives of w from above and below {x 2 - 0)

exist and we define
.1m*

w: l - a w (;lox
x2++ x2

and

x 2  x2+. x2 1 2

The link among these various limits is provided by the combination

Pn(x2)(f2(Vwn) - Lnwn

which, according to Theorem 4.4b), has a Halder exponent a > 0, uniformly in n. This

-Pq information combines to give

nl P (x(n) )(f (wx -1 - Xw) (6.3)
n n 2 2x I

P-(f (w Ow+ ) - )w} (6.4)2 2 1 x 2

- p{f 2 (w ,w ) )AW) (6.5)

where the terms other than w are evaluated at 1 1,0).x 2

Now one considers cases. If

f 2 (wXl, - 1) -Xv- 0
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then the bracketed terms in (6.4) and (6.5) eust also vanish, yielding

f2 (vlvx) -f2(wxjdv ) f2 (wx,

Since f 2 2 >0, it follows that

- + -
x2  w22

and thus (6.2) holds.

Next# suppose

f (V A6 > ~ 0 *(6.61
2

Since p+4  p n(X 2  for all x2, it follows from (6.3) and (6.4) that

v (f( 8- A)4P (f (wv Ow + AV)+ x ''- + 2 x Ix 2

and so

f2w 1)( 2(wxw+

Again using f 2 2 > 0 one concludes that

and since any limiting values of the gradient of w must lie in Q61 (6.2) follows.

If the inequality in (6.6) is reversed an argument similar to that just given, but

using the equality of (6.3) and (6.5), leads to (6.2).
aw (n) (n)

Case 3. 32 (XI Ox 2  + -1 16 n 12

The argument here is similar to that given in Case 2, but with 5 replaced by

-1 + 6. q.e.d.

Our next task is to show that w~2 cannot assume the value -1 + 8 if 8 is

sufficiently smll. Since -1 + 6X 2 the value -1 + 8 would be a minimum
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1a 6.3. The minimum of wx is assumd on the line (x2 =0) as a limit from above

or below.

Proof.* Since w satisfies the equation -(67

~fi (Vw) -O in T U T-67

it follows from differentiation that

-f (Vw) --2- -0 in e~ UT- (6.8)
axi ij axi ayik

for k - 1 or 2. By the maximum principle, V1 .2 vhich is continuous in VFand in

T, mest take its minimum value on the boundary of T + U T.- Since w is positive in

T and vanishes for x2 -- h and for x2 - I h, the strong maximum principle implies

that vx > 0 for x 2  -h and wx 2<0 for x-I-h.Consequently the minimum is

negative and must occur where x2 - 0 or x2  I h.

The function wx is negative in (0,-) x I (cf. Theorem 5.4) and is zero on the

half line (0,-) x (I - h). Since w is even in xj, wx is zero on (0) x I+and the

strong maximum principle implies

v >0 on (0,m) x {1 -h) (6.9)N

and

w 0 on (0)KI x (6.10)

The inequality (6.9) implies that the minimum of w on the line x2 I h must occur
x2

at X1 0. Suppose the equation (6.7) is written out in nondivergence form. SinceK

w 0on (02 it follows from (6.10) and the ellipticity of (6.7) that

w > 0 on (0) x 1 (6.11)

Hence the minimm of w on {0) I must occur at (0,0), showing that the minimum
x2

must occur on {x2 -0).
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The next result establishes a lower bound for A which serves in Theorem 2. 1 part

(b) and which will also be used in obtaining a lower bound for wX2* The proof of this

lea will be given in connection with related computations at the end of Section 6.

Lms 6.4. For any 85 (0,1) and R > 0 let (X,w) belong to G6,R* Then

1 ' P- - (6.12)

Recall that the switch from spatial to semi-Lagrangian independent coordinates was

made to circumvent the difficulties inherent in a direct approach to a free boundary. For

each solution (k,w) e G8,R the free boundary is merely the graph r - {x,w(x,0)} of the

function w(x,0). Recall from Theorem 5.9 that w(.,0) C C a(K). In Section 7 it will

be shown that it is real-analytic. Having obtained the boundary separating the two fluid

ccmponents we now revert to the pseudo-stream-function O(x,y) where (x,y) are spatial

coordinates in the strip S (cf. Section 1). Recall from (3.10) that

I + !.-= ± (6.13)
3x2  3*

ay

in S+' the upper fluid region, and in S-, the lower one, respectively. Since

), g/A d, (6. 13) will give a lower bound for wx fa pe on fo y i

established. The next lemma is a first stop towards bounding i n o

Leoma 6.5. Let (aw) belong to Gb8,R and let r be the corresponding pseudo-stream-

f unction. Then for any real m

m~m 1 2/' 2-

f m IV# dxdy c2.+ (6.14)

where K depends only on p and h.
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Remark. From Lema 6.4 it is clear that AK 1 - gK/L is bounded in terms of p

and h.

Proof of LeAa 6.5. Let the integral in (6.14) be denoted by E. From the relations

(2.20), (2.30), (3.10), and (3.11) there results

i, I I( 1-h) I + y2

•-1 (-h) 2*

f m+~t1 f1-h I + xIw2  
d x2d Id z

3Xfl -dx~dx)d I

m-1 -h x 2

+ 1-h 1 2
Xl d~d 2 •(6. 15)

C 2 fm f -h d I + w x dxf 2  (.5
m-1 -h x 2

Let U(x11) be a smooth cutoff function which equals 1 on (m - 1,n + 1] and has

support on [m - 2,m + 2]. Consider the fundamental equation (4.1) for a pair

(A newn) C rn,8,R converging to (X,w) e G6, R. Multiplying (4.1) by Vn, integrating

by parts, and letting n * , one obtains (cf. 4.11)

",,2 2+"-:1 x2(_ w~)v1

T ( +v
x2

-2 ff P UU, 1 + X(O_ - +) f u(x 1 )w2 (x,0)di

T°o x2

2

2 x I m +2
e £ ff Pu 2 +-f (U')'dx + 4X(p_ - p) (6.16)',::• d + ,, .-

T x2)2 + m-2+

where lv C I (cf. 4.35) has been used. If e is set equal to 1/2 in (6.16) the

resulting inequality implies
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: - .. . ... . . . : , :4 _ , : - ;-: - .-. . _ .- :- - . - : - : : : : :

S2 w+ - K2 (6.17)
T1f Pd 2 "1 f f Pd I +--

+n- I w ) 2 .- 1 I x2
( 2

where K' depends only on p and h. The last integrand in (6. 15) contains a sum of

(1 + wx2)-1 and 2 (1 + W )'l. The second of these also occurs in the second integral

of (6.17) and so is estimable.

w e Now cnsider p ad(  + s)- Where 2 - this integrand is at most 2¢d
-" while on the complementary set~x

1 4 2 W2
. + Wx2 )3 )2 x 2

Use of these estimates with the first integral in (6.17) gives a bound for the integral of

Opd(1 + wx2 )1 and the combined estimates yield an estimate for (6.15). q.e.d.

To make use of the bound (6.14) it will be necessary to show that the distance from

the streamline r to the boundary 38, denoted dist(ras), is bounded below.

lmma 6.6. Suppose (X,w) e G8 ,R. Then

dist(r,as) ) K 0 (6.18)

where K depends only on p and h.

Proof. In the case of elevation waves (e > 0) being treated. w % 0 so the

distance from r to the lower boundary is at least h. Since w is even in x1  and

decreasing on 0 C x, < -, the distance to the upper boundary is d - 1 - h - w(0,O).

Consider polar coordinates centered at (x,y) - (0, 1 - h) so that points within the

strip S have angular coordinates in (0,w]. From Leama 6.5

2 1I-h I

f f 1h rdrde 4 f f IV*1 dxdy ( c2K1  (6.19)
d 0 -h -1
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with K, depending only on p and h. From (6.19)

f I dr . 1 d c2 K1  (6.20)

For each fixed r e (0,1), #(r,O) = T(1) when 8 - 0 or w, while for each r C (d,1)

the semi-circle of radius r (0 4 < w) must intersect r, that is there must be an

angle W =(r) in (0,,) for which *(r,W) - 0. Since

2(1) " 1if "3 (.,e)de 2

2

1 w a,1 2 O(.1
% it follows from (6.20) that

(log 1 - ( c2 K • (6.22)

From (1.20), T(1) - c/ip (1 - h) and so

; ,2 -. , .

log I K( 1 h)2
d P p(I -h)

J from which (6. 18) follows. q.e.d.

The following lemma of Alt, Caffarelli, and Friedman [1] will be used.

. Lemma 6.7. Let u be a function in C(BR) n wI'2 (BR) where Br C R2 is a ball of

radius r centered at (x,y), where u(x,j) = 0. Suppose u is harmonic in

B R Mu 0) and set

-(r) f- f IVu*12dxdy . f f IVu-l 2 ddy (6.23)
7 

r B r B

Ir:.. -62-

A . .. . ..... .. .. . . . J



1. - - -.- . '. - VT rzr.rrrr7 . - -,- ~- rt v STr r ra - ru sw : ipx rV'r r.' -ru t . llWS . L i V -- .vw 7U4

where u + - sup(u,O) and u- inf(u,O). Then 9(r) is an increasing function of r

for 0 < r < R.

Theorem 6.8. Suppose (X,w) e G6,R Then

' , (6.24)
x

21(T)

4 and

wxl

+ K2  (6.25)

2 e(T)

where the constants depend only on P and h.

Proof. In lema 6.3 it was shown that the minimum of 1 + v is assumed on the

line {x2 - 0), from above or below. From the discussion surrounding (6.13) an upper

bound for a*/ay on the upper and lower sides of r will yield (6.24). The estimate

(6.25) follows similarly from a bound on 3*/3x which is harmonic in S and must assume

its maximum and minimum on aS+ U 3S8. Since * is constant on the lines {y - -h) and

(y - 1 - h), it suffices to bound I* on r.

Let *+ denote the restriction of * to S+  and *, the restriction to S.

Since *+ > 0 in S+  and *- < 0 in S-, this notation is consistent with that in the

previous lemma. According to Theorem 5.1 the function w(x,O) describing r is of class

C and Vw is of class Ca in Since Vw lies in Q5, the relations (3.10) and

(3.11) show that V74 is of class C in S, respectively. Let (3,y) be a point on

r and let 0* - V7,(', )f. If Br 4enotes the ball of radius r centered at ixy),

then from the previous lemma

I rlr) IV** f +14.12 1 - f V- 1 (6.26)

r r B Mr r
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is increasing in r for 0 < r < R where R - min(h, dist(raS)). From the regularity

just cited it follows that 9(r) has a liit, denoted 9(0), as r + 0 and

. w(a+1* w - ()(y (6.27)- 90) < q(R) ) (R-2c2K1)
2

p.- by Lema 6.5.

Recall that the continuity of pd(f2 Vw) - Aw) (cf. 4.31) is a translation of the

pressure condition (2.28) which becomes

2[() - (( " (o+ - o){ -" (6.28)
+

in the current notation. The two relations (6.27) and (6.28) easily imply that a and

- are bounded in terms of 0 t and h. q.e.d.

It follows from the last result that there is a 80 > 0 so that for 0 < 8 < 60  and
0 0,

R > 0 there is a pair (l,w) e G6,R for which

I - R

or

m a ( x IL 7(T ) ' I V L21 1 (T )

Hence S C N x (H I(T) r) CO , I(T)) defined by

S - UGI
n -

is an unbounded, connected set of solutions of problem (2.36)-(2.39).

-64-

I:'' V

. - ..- ... ' . . .. ... .-....-. -... . . ... . . . .. . ... -. . . . ..-. -. -,.



7. Proof of Theorem 2.1

7. 1. Existence and Basic Properties

The major part of the work involved in proving Theorem 2.1 has been done. In this

section we summarize those results already obtained and add proofs for the remaining parts

of the theorem, with one exception. As already noted, the lower bound A for A, given

by (6. 12), is derived in Section 8.

Part (a). The basic existence result in Theorem 2.1 was the culmination of the

analysin in Sections 3 through 6 and was asserted at the end of the previous section.

That elements of S are solutions of (2.36)-(2.39) follows from Theorem 5. 1(d). The

inclusion of (AX,0) in S follows from Leaa 5.5(c).
d

Part (b) The inequality X 4 Ad was given in Theorem 5.1. From Theorem 5.6 it

follows that ( dw) e S implies w = 0. All functions w under consideration have been

even in x, and hence their limits are even in xi. The remaining parts of b) were shown

in Theorem 5.4.

Part (c) The analyticity of w in the closed strips T will be shown in Theorem

7.6 below. As for the other assertions of regularity, they follow from Theorem 5. 1.

Part (d) These bounds, which translate into bounds on velocities, were obtained in

Theorem 6.S.

Part (e) In lemma 7.4 of [26] the exponential decay of solutions was shown both for

periodic waves over a half period and for solitary waves. The proof in [26] can be

simplified if only solitary waves are considered.

Part (f) This nonexistence result is shown in Theorem 7.7 below.

In the event a < 0, one can use (5.43) to arrive at the reversal of inequality

(5.47) and so prove Theorem 5.6. Similar small changes are required for the proof of

Theorem 5.7.
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7.2. Analyticity of the Interface

As was observed by Kinderlehrer, Nirenberg and Spruck [15] the analyticity of w in

will follow from results of Morrey ([20]1 [21], Chap. 6) once it is shown that w is

of class C2  
in T±. In [151 solutions of free boundary problems are examined under a

typical assumption that the solution is known to be C2 . Then a partial hodograph or

Legendre transformation together with suitable combinations and reflections of solutions

in abutting domains produce an elliptic system adapted to Morrey's results. Here we have

worked in a semi-Lagrangian (partial hodograph) setting for most of the analysis and hence

need only do a reflection once the C2  character of w in T is established. The C2

estimates could be carried out using the techniques from (3], but a relatively short

direct proof can be given and we do that in Corollary 7.5. A lemma is required (and could

9be given in a local version).

Lema 7.1. Let (X,w) be an element of G6, R  (cf. 4.7). Then there is a p " p(S) > 2

fand a constant K depending on 8 and R such that

f v ( K(1 + (f Ivv 1
2 )2- (p/2 )} (7.1)

T i T

for i 1, 2, where v w x

Proof. It will suffice to work with an element (X,w) e F (see Section 4) and
n, 6,R(seScin)ad

obtain !-n estimate which is independent of n. The subscript n will be suppressed.

The function v satisfies

a'. - P a Iv- -Ap'v in T (7.2)

ax - (ij(w ax.
:.#; ~xi -j

and

v - 0 on 3T . (7.3)

From inequalities (4.9) and (4.29) it follows that there is a p = p(6) > 2 such that

2 2 K'R (7.4)
L(T) L (T)

for all s in the interval [2,p(6)1, where K and K' depend on 6. A version of the
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-agliardo-Nirenberg inequality will be needed for a function u e H I(T). By extending

u as an even function across the lines {x2 - -h) and {x 2 = 1 - h) and using a cutoff

function in the x2  direction one easily derives

1ul O(CT) 'C X C IT) LP(T) (5

from the main theorem in lecture I of [22]. Hare p can take any value in the interval

[1,4]. We can, without lose of generality, assume p(8) < 4 and let p = p(8 ).

Squation (7.2) can be written as 

3CPf L Pf Lv- 3v av XP
3X2 21 ax, 22 3x2 V1 (l xj - 3X2

-P(f + f A. 0 (76)
Ijk ax Xj Sxk ajx~

where

4v a 2"Y I 3x2- (7.7)

fijk denotes a third derivative, and the summation convention is used. Without using the

-' equation one has

a pf av f v
T x-- (0f21 Wx1 

+ of 2 L " AO

P{f2 av + f 2 1 a + f 22 .O 2 avy} + (7.8)
21k i 1 x 2 2x

With pf2jvx - Xpv denoted by u, it follows from C7.6) and (7.8) that

f Ivui2 rC y2 f (IVy2 + jVvj2 + v4  + 4  (7.9)
T T x I 2 ) 79

where K2  depends on 8 and R. Since the L2  norm of IVvl and, by embedding, any

LP norm of v are bounded in terms of R (cf. (4.9)) such terms can be accommodated by

including additive or multiplicative constants. Since f2 2  is bounded below by a

positive constant depending on 6, the use of (7.5) yields
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I v4 4 3 f Cu4 + pf 2 1 v - Xpv) 4

T '2 T I

-C ( %fu 4 + K;(f V
4 +9-f v 4

xT T T 1

,K [IVuI4 Iu1p  + 1 + f v4  (7. 10)
L 2T) LP(T) T 1 

Using (7.4) to estimate u in LP and (7.9) to estimate Vu in L 2 , we have

f v 4  < 6  41 + f v (f (IYIl 2 + v 4 +v 4•))- (7.11)

T x2 T 1 T x 1 x2

Since 2 - (p/2) < 1, equation (7.11) provides a bound

f v4  < K.7(1 + f v4  + (f IvY12 2 (p/2)1  (7. 12)
T x2 T X1 T

where K7 depends only on 6 and R.

The embedding inequality (7.5) applied to vx c H)(T) gives

f v4  < %{f ivi2 1 -( p / 2 ) I Iv iP 4 {f ivr2 2- ( p/ 2 ) (7.13)
T x1 T T 1 T

again using p = p() and (7.4). The use of (7.13) alone, and in (7.12) produces the

result (7.1). q.e.d.

Theorem 7.2. Suppose (X,w) ( G Then

f [W x x 12 < K (7.14)
T 1 1

where K depends on 8 and R.

Proof. Continuing the analysis in the previous proof for a solution in F one
n, 8,R

differentiates (7.2) to obtain

a .)v v- Of Iij(Vw) T = =_ ) - AP'Y in T (7.15)
i fxj i T--"
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a nd, srince 1 8Y 2 ;-/3x 2

a 0 on 3T * (7. 16)

The ellipticity of the equation (7.15) yields

V f IVY1 2 C IPf ijI

f y P vx -, 2Xf PvYY

T'j 1jik4T1Wi x2

S'f Iv'12 + K f (V ,,4 + Y 2 (7.17)

The bound (7.14) now follows from the previous lem and Lmina 4.2. We note again that

the estimates are all uniform in n and so hold in G6, R ' q.e.d.

Corollary 7.3. If (X,w) C G 6,l then

(K (7.18)

1 LP(T)

for all p c [2,-), where K depends only on p, 8, and R.

A. Proof. From the previous theorem the integral of I vY12 over T is bounded and
from Lemma 7. 1, so are the integrals of v4  4nd v r

Xq adv2" From (7.9)

f V(f av + Pf 2 2  2" _ pv)I2 < K1
T 2

where KI depends upon 6 and R. Hence pf2Vx - Apv is in LP(T) for all
2ivU p L [2,-), according to embedding theory. The same embedding result, used with (4.9) and

Theorem 7.2, shows that v and v are in LP(T) for all p c [2,-). Since f2 2 has

a positive lower bound depending only on 6, it follows that vx2 is in the same LP

spaces. q.e.d.

It is now possible to return to the elliptic equation for y to obtain
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Theorem 7.4. Let (X,v) be in GR. 'Then there is a q = q(8) > 2 so that y =xlx

satisfies

f IVYlq < K (7.19)
T

where K depends on 6 and R.

Proof. For (X,w) C F the equation (7. 15) for y -WXX can be written

(of L- )  div F + h
3 ij ax i

where
jv av

F 1 - Pfljk 3x a

jV v - -Iv

F2 -Pf2jk ax j -Tx

and

h - Xp 2L

x2

By the previous corollary F 1 and F2 are in LP(T) for p c [2,m) while from Theorem

7.2, h e L
2
(T). As for equation (4.24) Theorem 1 of Meyers [181 yields (7.19) for som

q > 2. All estimates are independent of n so the inequality (7.19) follows for all

(X,w) c G8, R ' q.e.d.

Corollary 7.5. Let (A,w) be in G 8,R Then w c C 2 , (T) for some a > 0 and hence

2,a
the fluid interface y - w(x,O) is of class C

Proof. The C
2
'
a  

character of the interface follows from (7.19) and embedding

theory. The Schauder theory ([131, lrmma 6.18) provides the same regularity in

T q.e.d.

" 4"
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Theorem 7.6. Suppose (A,w) is a solution of (2.36)-(2.39) belonging to S. Then w is

real analytic in T and T .

Proof. Since w is of class C2 'o in i4 the techniques of [15] can now be

used. In fact, if we revert to the formulation in which *(xy) is harmonic in S+

and S- and satisfies (2.27), (2.28), then Theorem 3.2 of [151 yields analyticity.

7.3. Nonexistence of Small Solutions with e * w < 0

We now prove part (f) of Theorem 2.1.

Theorem 7.7. Suppose

0. .+

• >0.

h2  (1 - h)
2

There is a positive n such that if (.,w) e R x (H I(T) r) C0' 1(T)) is a solution of
3w

(2.39) with w 0, >0 0 for x, ) 0, and

- +IwI + IwI 0'  < ii , (7.20)

then w - 0.

Proof. Repeating estimates already used, in conjunction with difference quotients in

the x, direction, one can show w is smooth in each of T and 7 and we shall

assume the smoothness necessary for the calculations to follow. First it will be shown

that if the hypotheses of the theorem are met and X > Xd" then w E 0. The steps

involved in the proof of Theorem 5.6 up to (5.40) can be duplicated for the case of a

discontinuous density, that is, for pd" The equation (5. 12) which formally becomes

2. (dy'), - xp y - a dy

is replaced by the weak form

- f ~ ~~ - f ~'~'9 (7.21)
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2 6 T S -C- T-

where Y and 9 are in 0(I). Squation (7.21) arises from the variational problem

- p+)u 2 (0) - f Pdlu') 2)

I

which corresponds to (5.11). The maximizer y is normalized by f d = I and, as in

the proof of Lomma 5.5. we have a > 0 since X > Ad" In following the proof of Theorem

5.6 one need only let the derivative of a density in an integral be interpreted as

f Piglxl'x2)dx2 - -(p_ - p+)qlx ,0)
I

in the case of the discontinuous Pd from (2.26). As regards (5.35), let T correspond

to the density pd The extra condition of orthogonality yields T > Ad and it can be

assumed that A is sufficiently close to Ad to make 1 - X/T - 8 > 0.

As regards the steps in the proof of Theorem 5.6 past (5.40) the only change is in

the discussion following (5.40), for now a is positive rather than negative. Inequality

(5.41) is replaced by

(jI)2 +1P R12C F - + ~. + K. 326 6

and in place of (5.42) one has

G' + O + er 2  2 2 - ( 2 F 2  +  U.+K 3 )

It follows from this inequality that

G, - Ku' + (a - KII e )F ) 0

for constants K and K, (we may assume iII . 4 1). If this last inequality is
L

integrated from x to -, where x ) 0, and the result rewritten in the vein of (5.45)

the result is

Wx Xx 2 ) Fm~ x

f Pd V1xw (xx ) 01 XW}dx2 + (a - K1171 .) ~ d 0
I I + w 1 + xx2 ) 2  L7 x
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If w is small in C O'lT), the expression I - Rw/y will be positive as will

a K 1,r * Sinc -w., and P are both negative, a contradiction arises unless
L 1

.4, w "=O.

now we may assume A C )d. If I is met equal to w in the equation (2.39), the

result is

IVwI2 (2 + w )
2 - Pdfi(VV)Vx - X(¢p - p+) f w2(xl,0)dxl

T 2(1 + -
x2

or, rewritten,

f PI wI2 - A(p. - f+) w 2(Xl.0)dx 1 w pxVV 2 ( + 2  " (7.22)
T -40 T2(1 + 2

T -,. x2

in analogy with (5.16)-(5. 18), we decompose w as

w(xlX 2 ) - F(x )y (x2 ) + R(zlx 2 ) (7.23)

where yd is the function described in (5.13) and

1(X 1 ) -f Pidw(lx 2 )Yddx2 ,  x 1 t a
ZI

V Note that yd satisfies the weak equation

f Pd¥y' - d(P- +)Yd(0)(0) (7.24)
I

for any 4 c Hy((). A further relation, the analogue of (5.19), is

.4 f PdR(x1x 2 )yddx2 - 0' x1 c a" (7.25)

The decomposition (7.23) and the relations (7.24)-(7.25), used in the left-hand side of

(7.22), result in
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f pd'vW1 2 - X(p_ - p+) f w2 (x,,0)dxl
R -"

-(F2 + f PdIVR
2  

X(p_ - P+) f R
2
(xlO)dxl

+ 10_ - P+)Ydl0l( d - X) f F
2
dxI + 2(X - A)(p_ - p+)Yd(0) f FR(xl,0)dx1 . (7.26)

d d -. 0

In analogy with the discussion following (5.35), the orthogonality (7.25) ensures that

f PdIVRI - X(P_ - P+) f R2(x,0)dxI ) f IVRI2  (7.27)
T "T

for aces X > 0 whenever x - Xd is sufficiently small. For the last term in (7.26)

we use the Schwarz and Poincarg inequalities to obtain

2
(Ad - A)(p - p )Yd( 0 ) f F(x 1 )R(x 1,0)dx

-C K f VR1 + K'IA4  X1 A (0) f Pdx1  (7.28)
T d Y

If (7.27) and (7.28) are used in (7.26) and if Xd A is made still smaller if

necessary, there results

plw, 2  _ - ) w2 (x,O)dx ) (F'l(x) + 2 7

T T

Now consider the right-hand side of (7.22). First, for any e > 0

2 w x 2(3 + 2w x --

f x 2 P w -f Il 2V + f (F')2 dX1  (7.30)
T d 2(1 +w 2 T -

provided w is sufficiently small in C' (T)- Next, with the use of (7.23) one obtains
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| .

3 If 2 2 1 +- ) 3 )f x 0 . (7.3 ))2! < d "T(F(xl)y'(x2)) + dx I + 7(.1

T(1 + wT

-* suf ficiently s mall n C () where K an the onstant appearing in (7.29).sal

The first ter on the right-hand side of (7.31) s the nnegeal over R of ;F3 (x1 )
,.'/ '. where ; is defined by (S.26) and is positi:lve, beiLng a positive multiple of a in ,

, 12.41. f the nequal t e s 7.29 , 17.30) and 7.31) ae used w th eq ut on 7.22 ) and

.
"

Ithe nteg rnd 4 is est imted above by -iF1 there esult s ,

(I' -c) f -V 12 + (( ) r )2d -x'l . [ F 3dx it 0 17.32) .

Snce P f Pd wYd < 0 , it in~ cle ar f rm the e stma e s :ju t.co mle e d th at if w h as a

I '

-'F 
=  VR -3 0 and hence w . q.e.d.
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8. Waves of Large Amplitude

Since the branch of solutions S from Theorem 2.1 is unbounded in

R x (H (T) fl C
O , 1

(T)) and the range of I is bounded, the norms of w in H (T) and in

CO , 1 (T) cannot both remain bounded on S.

In Section 6 it was established that there is a 80 > 0 so that wx2 P -1 + 80  for

all (X,w) c S. If the gradient of w were uniformly bounded for (X,w) c S, there

would be a positive 81 C 6 such that for all solution in S, Vw e Q But then the
1 1

coefficients fij would satisfy the bounds (4.15) and (4.16) with 6 - 6 1, uniformly for

(X,w) e S. This, in turn, would imply that in S there would be solutions having

IWI 2T) arbitrarily large. For, if not, then the local estimates (4.20) and (4.33),
L (T)

summed over m, would lead to a bound for Vw in L2 (T) and hence to a bound for w

in HI(T). To go one step further, since 0 ( w 4 1, a large norm for w in L2 can

arise only by having a wave which is very wbroad". The alternatives, then, are to have

waves which are arbitrarily broad or ones with arbitrarily large gradients. Of course,

waves may exhibit both properties.

Numerical computations in the related problem of the interface between two unbounded

fluids of differing densities (cf. (17], [28)) show that there are branches of periodic

Nwaves along which the gradients approach infinity. The condition (6.25) necessitates

. w being large if the vector Vw is large. However, in the computations cited w
x2  X1

gocs to infinity and thus both components of Vw must grow unboundedly along the

branch. In fact, the streamlines steepen to the point of having vertical tangents and

continue past this configuration to one of "overhanging" waves, in which the separating
streamline is no longer a graph over the horizontal axis. Computations are underway on

the solitary wave problem studied here (cf. [29]), but it is premature to predict the

. large norm behavior. We will show that if waves broaden indefinitely, maintaining

- uniformly bounded gradients, then a solution representing an "internal bore" with

specified amplitude and speed (determined by (8.23) and (8.24)) must exist. If, on
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the har hnd, there were a sequence (X wk) S, k - 1,2,... with supI:wkI - a:

k + -, one could expect these to converge to a limiting wave with a vertical tangent on

the interface.

8.1. Internal Bores

Let (XkWk) c S, k - 1,2, be a sequence of solutions of (2.36)-(2.39) for the

density pd. Suppose that for some 6 > 0, Vw C Q, for all k and that Iw2I
- dk 8k L (T)

as k s. As already noted, the H5ider estimates (4.20) and (4.33) for the gradients

will hold uniformly in k. Consequently one can use the diagonal method to select a
subsequaete, still denoted (X.,'wk) for which Xk 

+ 
i 4 Ad and wk  converges in

subsequence, fu c d , co nveg--i

. 0,1 (8), for all bounded sets S, to a function W(xlx 2 ) C 
0 , 1 (i) n C I(T'). T

limiting function w will satisfy all of the estimates derived in Lemma 4.3 and Theorem

4.4 namely, the local estimates which are independent of R. Naturally, w inherits the

V. evenness in x1 and satisfies 8w/Dx 1 4 0 for x1 o 0. Since w is also nonnegative,

liwlx 1 ,x 2 ) -wx 2 ) (8.1)| *

exists. To examine further the implications of this convergence, we shift it to

B - [-1,1] x I by letting ;I(x 1 ,X 2 ) - w(x 1 + m~x2). WOw w is bounded in Cl'(aB)

uniformly in m, according to the HSlder estimates (4.20) and (4.33). Since w

converges in C(B) to w, it must also converge in C0,lB () T 
) 

according to the

Arzela-Ascoli theorem and the limit w must be in CI'm(it) as a function of x2

alone.

Now let O(x 1) be an arbitrary element of C 0 (-1, 1) and T, an arbitrary element

f of Ce(I). Using the product ST as a test function in (4.39) with w - w and

P. 0d , and letting m * one obtains

(,x ,f dw,. dT (8.2,

f pC 2 f 2 (0' _R2) - - X(P -p) 4 0t0 82
I2 2
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which is the weak form of

d d;
fd 0 dw aa

fd (8.3)

As a consequence the nonnegative, continuous function w will be linear where pA = 0,

that is, on I- and on I+o

Suppose w E 0. That is, suppose that w * 0 as x * + . Then as x, +- the

functions wk defined at the outset of this discussion must converge to zero uniformly

in k as elements of L(I) depending on x1. Their gradients must converge to zero in

the same sense, according to the local estimates (4.20) and (4.33). Suppose Ak from the

pair kt(,wk ) converges to A < Ad  as k + a. In Lemma 5.2 an estimate was made of the

"tail" of w; that is, the restriction of w to Tm - [m,-) x I. There a bound for w

H(T) was used to show that the CO, (f ) norm of w went to zero with m,

yielding the estimate (5.6). Since the functions wk  under discussion have their norms

in CO ' (Tm ) converging to zero with increasing m, uniformly in k, the estimate (5.6)

can be seen to hold for w - wk  with the constant K in (5.6) depending only on i and

on the 6 which serves for all k. A bound for wk in H ([-m,m] x I) follows easily

from the estimates in Section 4 and thus the wk  are uniformly bounded in H [T),

contradicting the initial hypothesis that IwkI 11(T) + = as k +

In the case that Ak + A = Ad as k + - a similar situation prevails as regards the

behavior of w and Vw for large xj. It suffices in the proofs of Theorems 5.6 and 5.7

to have the norm of w in CO , 1 (T) approach zero as m + - and this we have for

w = wk , uniformly in k. A consequence of those theorems is that w = 0 and that wk

converges to w = 0 in H (T), again contradicting the initial assumption. Consequently

and w are both positive. We summarize what has been proven in
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Theorem 8. 1. Suppose that fAWk) E S, k - 1,2,..., satisfy

(a) IVwkI ( K, for all k i'.

L (T)
and

(b) 'k + A and IwkI , + as k.
H (T)
0

Then wk converges to w(XlX 2 ) in C(S) fl C (B r) T*) for each bounded set B. The

function w is positive on T, nonincreasing for x 1  0, real-analytic in

- {x2  0 0), and satisfies

lie w(x1,.) -w (8.4)
x I+"

in C(M) ( C0' 1(I+1 where v is positive on Ii linear on I+  and I-, and satisfies

(8.2). Both w and ; satisfy (2.36), (2.37), and (2.39).

A

Note that w is a solution of the flow equations (just enumerated) which is

independent of x. Using the nomenclature of Benjamin [9] we shall call wa a conjugate

flow. According to Theorem 8. 1 the function W. must have the form

A A(x 2 + h), x2 c Iw = l+ (8.5) .-.

B( 2 - 1 + h), x 2 'E I

for some value of A where, by continuity Ah - B(-I + h). Equation 8.2 gives .

A- (A), where

1( ( 2) 77--72)] •(8.6)

+ (1 + A) 1 + )

Since aw / x = B > -1 on I we have 0 < A < (1 - h)/h in (8.6). The amplitude
- 2

A and the speed

c - c A  ((/A(A)) 8.7)

are as yet unknown. To determine A we show that as a consequence of Theorem 8. 1 there

is a flow in the strip which connects a trivial flow to a conjugate flow. That is, there .

is a solution of (2.36), (2.37), and (2.39) which has the following asymptotic behavior.
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As x * -. it approaches a flow with velocity vector (CA,0) in a fluid which has

density p_ for -h < y < 0 and density p+ for 0 < y < 1 - h. An x. the

conditions approached are.9.

(. -A cA,0) for -h < y < Ah

velocity - (8.8)

0 h CA,O) for Ah < y < 1 - hw e ((I - h - Ah)

according to the relations (2.43).

Theorem 8.2. Suppose the hypotheses of Theorem 8.1 are satisfied. Then there is a

solution (A,J(XX 2 )) of (2.36), (2.37), and (2.39) with the following properties:

(a) j is real analytic in T - {x2 - 01 and is in C (T) f C0 , 1(T) for some

a > 0.

(b) 3j/3;x 1 > 0 in T.

The element j(x 1 ") of C I (i) satisfies

(c) lim Ii(x1,.)I0, 11-1 0

and

(d) lim 1j(x 1 ,.) - w.c 1 1 1 = 0
x 1+ 4"  

C

where w. is a conjugate flow corresponding to some value of A > 0 and A = ACM).

Proof. It can be readily verified that

AC() - A - 3he A + O(A
2 1  

(8.9)
d 2(p_ - p+)

for A near zero, where Ad and e are defined by (2.40) and (2.41), respectively.

Since e > 0, by assumption, A(A) < X for small positive A. Since A(A) + +i as
d

A + (I - h)/h, it is clear that AMA) is not one to one on the preimage of the interval

[OAd], the set of interest to us. Let the conjugate flow w. in Theorem 8.1 correspond

to a value A > 0 in (8.5). From the form of A(A) it is clear that there is a smallest

'J -80-

.
-so-

-,,. ,

• ° ,q '



positive value A for which .'/,) - ACA). Let w in the statement of the theorem

correspond to this smallest value.

Return now to the sequence wk from Theorem 8. 1. The functions wk converge in
C on bounded sets to w and W(Xl,0) approaches Ah > 0 as x , . For each k,

wk(Xl,O) + 0 as x, -. Hence for each large k there is a value Ek < 0 (precisely

one since 3w/ax1 > 0 for x, < 0) for which

Wk '0. Ah<- 4 8.10) '

Define Jk' k - 1,2,..., by 2 28

jk(XlIX2 ) Wk(XI + C k,x 2 ) . (9.11)

As with the functions wk one finds that a subsequence of the Jk' denoted by the same

symbols, converges in C0' 1(B), for each bounded B C T, to a function J(xlx 2) in

Cl'a(T) CO, '(T). Since for each fixed xl, Wk(XlO) converges to

W(Xl,0) w(0) - Ah, the points &k at which (8.10) holds must approach as

k + -. Again fix a value of x1. For all sufficiently large K, x1 + Ck < 0 and so

ik/- x I > 0 at that x, for all x2 C I. Thus BJ/3x 1 (x 1 ,x 2 ) ; 0 for all

(xl,x2 ) e T. Since J is monotone, bounded, and in CIM(Tt) n CO, 1(f), the limits

j(x 2 ) - lim J(xlx 2) (8. 12)

x ft-

exist. As in the proof of Theorem 8. 1 one shows that the limits can be taken in the

CO ' 1 (i) topology and that jt are conjugate flows satisfying (8.2) for

X - A(A) - AMA).

Since j+(+=SO) ) J(O,0) - Ah > 0, the function J+ is a nontrivial conjugate

flow. Since j.-,0) 4 J(0,0) - -1 Ah and since Ah is the smallest height at x2 - 0

for a nontrivial conjugate flow with A J- - A(A) j_ must be zero. As claimed the

function j then represents an internal "hydraulic jump" connecting a trivial flow at

x = - with speed c given by (8.7) to a positive conjugate flow at x - +- with the

structure (8.8). The remaining regularity in i) and the positivity in ii) are shown as in

Theorem 8. 1. q.e.d.
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Implicit in the form of the conjugate flow (8.5) is the conservation of mame in the

CA
lower fluid, connecting a flow of height (1 + A)h and speed I + at x = with a

flow at - of height h and speed CA. A similar situation prevails in the upper

fluid. This same conservation can be obtained starting with

div(pq) - 0 (8.13)

from Section 2 (cf. (2.9)-(2.10)) since streamlines are integral curves for the field q.

Another conserved quantity can be derived from the momentum equation (2.8). It can

be expressed by the exactness of the form

P 1/ 2ud% + p dy , (8.14)

assuming now that we are working with a smooth density p. To see the exactness express

(81)as

1/2u 2dx + P1/2u 2k dy + p dy - -puv dx + (pu
2 

+ p)dy

By using divi - 0 and Vp * q - 0 one may show that

2
(-PUV)y (Pu + P)x " - x(UxU + uyv) - Px " 0

using the horizontal component of the momentum equation (2.8).

Now # and y are constant on the "walls" at y - -h and y - I -h, and if

(8.14) is integrated around the boundary of the rectangle Ia,b) x I-h, 1 - h] there

results

1-h + ) 1-h 1/ + dy (9.15)

h 3Y-h 3y -h ay xb

That is, each integral appearing in (8.15) is independent of the x coordinate (cf.

[8]). If the expression (2.15) for the total head N is used to replace p in (8.15)

and the relation (2. 14) is used, the x-invariant quantity in (8.15) can be expressed as

1-h 1 2
f[H + ( - )- gyldy • (8.16)
-h

Given the regularity and the convergence properties of the flows considered up to this
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point it is easy to verify that the expression (8. 16) will be invariant for the flow

associated with J(xlx 2 ). By equating the values of (8.16) at x, and x, - --,

one obtains another condition on A in the conjugate flow J+, from which A can be

determined.

Hormalize the pressure so that it is 0 at x, - -, x2 = 0. Then H has the

values

-- C (8.17)
" H~t: 2 Pt

in the upper and lower fluids, respectively. As x, - x , x 
+ 

0 for the flow

corresponding to j and the term *2 is merely the density times the square of the
ohy

horizontal velocity. At x = - the expression (8.16) is

2 2
1 2h + .1  

€
2h + h1 + 2 - h) + 1 2 - gp+ 

( 1 - h) (
P - p gpC~ ~ (1 2-h +- ~ (I - h 2 (.8

where c - CA in (8.7). -The value of (8.16) at x = 4- is computed using the velocities

and heights in (8.8). The result is

1 2 1 c2h (A
2h2 - h 2 )

-C c(1 + A)h + 0-p _- - gp2 - 2-t A - 2

2 2 2 2
1 c(1 - h) r(1 h) A2hP. 0+c ( h - Ah ) + - 1 h 9P g + L ] ( . 9

+2 +I - h - 2

Considering the expression (8.19) as a power series in A there is a constant term which

is, of course, (8.18). The linear term in A vanishes and what remains is

2 A 2 Ah 1 2 1 A 2h22h9. +- .- p c - + gP A (8.20)

which must be zero. If an A
2  

is cancelled and g/c
2  

set equal to ) the result is

_ + P+ (8.21)

=(p - p) h(1 + A) _b-Ah

If this is equated to the expression (8.6) and terms of zeroth order in A are eliminated

5' "-83-
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%:

the result is

p A p Ah
- + - 0 (8.22)

2( + A)
2  2(1 - h - Ah)

2

If an A is cancelled and the result solved, one finds

A- (--h) - h (8.23)

- - h T,-h
_+ /4+ + p+.'

(=+ T-~

where e is the parameter defined in (2.41).

$, If the expression for A in (8.23) is used in (8.21), the result is

S . . + (8.24)
- p+.

This last expression is strictly less than A d when e a 0 and is equal to Ad when

5-0.

Next we give the

8.2. Proof of Lema 6.4

For a smooth density p approximating pd and a solution (A,w) of (2.36)-(2.38),

the equation (2.36) can be written

W

w(x + (1 +wI )+ " Pf2 (vw) -p'w
x22)(1  w xX 2

For each x2, w(xlx 2 ) has its maximum at x, - 0 and hence w X(0x 2 ) - 0 and

wl(0x 2 ) ( 0. If the last equation is restricted to the line {x1 - 0), then

- - P(x 2 )f2 (Owx (Ox 2 )) Xp(x 2 )w(O,x2 )  (8.25)

ax2 2 2 22 2

results. If (8.25) is multiplied by g(x2) - v(0,x2 ) and the result integrated over
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1, it yields

f pf 2 (0,g')q' ( -X f p'g 2 • (8.26)
'I I

Consider now a pair (X,;) e G 8R' There is a sequence (A ,wn) C Fn,6,R With 'n +

and w, + w in C0 1 [-1,1] x 1) as n * and (8.26) holds with P - Pn ,

9 gn ' wn(O0x2). and X - Xn . If P - F(p) is any real function defined for p > -1

satisfying

F(p) 4 f2 (0,p)p (8,27)

for -1 + 6 C p 4 6-, then it follows that

inf 2(Q
ge 1 (1) (_- P+)g2(0) (8.28)

-t+649'(51
O<g(O)(1-h)(1-6)

is a lower bound for ). Note that g(O) - ;(0,0) > 0 for any nontrivial element of

G8R, for the maximum principle applied in T+  and in T- shows w has its maximum

at (0,0).

The function F(p) - f(0,p) is easily seen to satisfy (8.27) and moreover, is convex

for p > -1, having a second derivative equal to (1 + p)- 3 . Let f5 (p) be strictly

convex for all p e R, coincide with f(O,p) for -1 + 6 < p < 5-1, and have quadratic

growth near p = *-. One can, for example, extend f2 2 (0,p) continuously outside of

[-1 + 8,8- 1 to be constant for p < -1 + 8 and for p > -1. Two integrations will

then yield a suitable f,. The inftnus in (8.28) will be unaffected by replacing

F(g') - f(0,g') by f (g'). After replacement the infimum can only be made lower by

removing the condition on g'. Thus
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f Pdf8(9')
1 8 = inf 2 (8.29)

SgH(l ( - P)g (0)
." 0<~g)< (I-) (16

is a lower bound for Oh

For each constant y > 0 the set

(g C I)MIg(o) = 'Y}

is an af fine subspace of H0() and the convex functional

J(g) = d Pdf (g')
I

is therefore weakly lower semi-continuous on Q. Since J is nonnegative, there is a

go Q at which J assumes its minimum. For n e C(I-), gO + tn e Q and a standard

variational argument shown

f Pdf5(gln' - 0

From the classical theorem of DuBois-Reymond it follows that g6 is constant on I-.

Likewise it is constant on I+ . Thus go has the form (8.5) of a conjugate flow with

g0( = Ah 4 (1 - h)(i - 8). For such a function the quotient in (8.29) takes the form

1 A Ah22
I -A h + -I A-h

1 - + A 2 p+ 1 - h - (930
P+ - p ) I2h

2  (8.30)

- -"

which is precisely half the expression in (8.21). At a minimum A satisfies (8.22) and

the corresponding minimum value is half of that in (8.24), giving the bound (6. 12).

q.e.d.

A better lower bound for could be found. The function

=p 2(2 + p) (.1
f2 (0,plp = 2 2 (8.31)

2(1 + p)
2
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is convex on -1 5 ( p ( 2 for each 6 > 0 and can be extended outside that range, as

before, to a globally defined convex function (p) which grows quadratically at -.

One can now use an argument like that just given. The expression in (8.31) can be used

for V(p) in (8.28) with the restriction -1 + 8 ( g' ( 2. In (8.29) one replaces f6

by and finds a piece-wise linear minimizer g having a derivative
rA>o, x2 <O0

'9x A2 ) > 0h (8.32)

1-h' x2 > 0
1hNote that A c (0, 1 h h) since g' > -1. If h ; 1/3, so that (I - h)/h 4 2, then

lies in the range for which the integrand in (8.29) is the expression in (8.31).

-hCorresponding to (8.30) one obtains an expression to minimize for A e (0, - )

Unfortunately, the minimizing value of A satisfies a fourth order equation. Without

giving the details we merely note that if p+ - 2, p " 1, and h - 1/2, so that

(1 - h)/h < 2, the following numerical values are obtained. The bifurcation point is

Ad - 6 and Lemma 6.4 gives the lower bound 2.91, whence 2.91 c A < 6. The minimization

using (8.31) yields the better estimate: 5.81 < A < 6.

I0
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